Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68877 by mathmax by abdo last updated on 16/Sep/19

calculate ∫_(−∞) ^(+∞)    ((xdx)/((x^2 −x+i)^2 ))     with i^2 =−1

calculate+xdx(x2x+i)2withi2=1

Commented by mathmax by abdo last updated on 18/Sep/19

let A =∫_(−∞) ^(+∞)   ((xdx)/((x^2 −x +i)^2 ))  let  ϕ(z) =(z/((z^2 −z +i)^2 )) poles of ϕ?  z^2 −z +i =0 ⇒Δ =1−4i =(√(17))e^(iarctan(−4))  =(√(17))e^(−i arctan(4))   z_1 =((1+17^(1/4)  e^(−(i/2)arctan(4)) )/2)  and z_2 =((1−17^(1/4)  e^(−(i/2)arctan(4)) )/2)  ϕ(z) =(z/((z−z_1 )^2 (z−z_2 )^2 ))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,z_2 )  Res(ϕ,z_2 ) =lim_(z→z_2 )  (1/((2−1)!)){ (z−z_2 )^2 ϕ(z)}^((1))   =lim_(z→z_2 )   {(z/((z−z_1 )^2 ))}^((1))  =lim_(z→z_1 )    (((z−z_1 )^2 −2(z−z_1 )z)/((z−z_1 )^4 ))  =lim_(z→z_2    )      ((z−z_1 −2z)/((z−z_1 )^3 )) =lim_(z→z_2 )    ((−z−z_1 )/((z−z_1 )^3 )) =((−z_2 −z_1 )/((z_2 −z_1 )^3 ))  =−(1/((−17^(1/4)  e^(−(i/2)arctan(4)) )^3 )) =(1/(17^(3/4)  e^(−((3i)/2) arctan(4)) )) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ×(1/(17^(3/4)  e^(−((3i)/2) arctan(4)) )) =((2iπ e^(((3i)/2) arctan(4)) )/(17^(3/4) )) = A

letA=+xdx(x2x+i)2letφ(z)=z(z2z+i)2polesofφ?z2z+i=0Δ=14i=17eiarctan(4)=17eiarctan(4)z1=1+1714ei2arctan(4)2andz2=11714ei2arctan(4)2φ(z)=z(zz1)2(zz2)2residustheoremgive+φ(z)dz=2iπRes(φ,z2)Res(φ,z2)=limzz21(21)!{(zz2)2φ(z)}(1)=limzz2{z(zz1)2}(1)=limzz1(zz1)22(zz1)z(zz1)4=limzz2zz12z(zz1)3=limzz2zz1(zz1)3=z2z1(z2z1)3=1(1714ei2arctan(4))3=11734e3i2arctan(4)+φ(z)dz=2iπ×11734e3i2arctan(4)=2iπe3i2arctan(4)1734=A

Terms of Service

Privacy Policy

Contact: info@tinkutara.com