Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33599 by abdo imad last updated on 19/Apr/18

calculatef(a)=  ∫_(−a) ^a     (dx/((t^2  +x^2 )^(3/2) ))  with a>0 .

calculatef(a)=aadx(t2+x2)32witha>0.

Commented by abdo imad last updated on 20/Apr/18

case 1   t≠o  changement x=ttanθ  give  f(a) = ∫_(−arctan((a/t))) ^(arctan((a/t)))     (1/((t^2 (1+tan^2 θ))^(3/2) )) t(1+tan^2 θ)dθ  = ∫_(−arctan((a/t))) ^(arctan((a/t)))      ((t(1+tan^2 θ))/(t^3 (1+tan^2 θ)^(3/2) ))dθ  =(1/t^2 ) ∫_(−arctan((a/t))) ^(arctan((a/t)))        (dθ/((1+tan^2 θ)^(1/2) ))  =(2/t^2 ) ∫_0 ^(arctan((a/t)))   cosθ dθ  =(2/t^2 )[ sinθ]_0 ^(arcan((a/t)))   = (2/t^2 ) sin(arctan((a/t)))  but we have sin(arctanu)=(u/(√(1+u^2 )))  f(a) = (2/t^2 )  ((a/t)/(√(1+(a^2 /t^2 )))) = ((2a)/t)   (1/(√((t^2 +a^2 )/t^2 )))  =((2a∣t∣)/(t(√(a^2  +t^2 ))))  f(a) = ((2aξ(t))/(√(t^2  +a^2 )))   with  ξ(t)=1 if t>0 and ξ(t)=−1 if t<0  case 2 if t=0  f(a) = ∫_(−a) ^a   (dx/x^3 ) =0 because x→x^3  is odd.

case1tochangementx=ttanθgivef(a)=arctan(at)arctan(at)1(t2(1+tan2θ))32t(1+tan2θ)dθ=arctan(at)arctan(at)t(1+tan2θ)t3(1+tan2θ)32dθ=1t2arctan(at)arctan(at)dθ(1+tan2θ)12=2t20arctan(at)cosθdθ=2t2[sinθ]0arcan(at)=2t2sin(arctan(at))butwehavesin(arctanu)=u1+u2f(a)=2t2at1+a2t2=2at1t2+a2t2=2atta2+t2f(a)=2aξ(t)t2+a2withξ(t)=1ift>0andξ(t)=1ift<0case2ift=0f(a)=aadxx3=0becausexx3isodd.

Commented by abdo imad last updated on 20/Apr/18

error at line 7  f(a) = ((2a)/t^2 ) (1/(√((t^2  +a^2 )/t^2 ))) =((2a ∣t∣)/(t^2 (√(a^2  +t^2 ))))  = ((2aξ(t))/(t(√(a^2  +t^2 )))) .

erroratline7f(a)=2at21t2+a2t2=2att2a2+t2=2aξ(t)ta2+t2.

Answered by alex041103 last updated on 20/Apr/18

∫(dx/((t^2 +x^2 )^(3/2) ))=(1/t^3 )∫(dx/((1+((x/t))^2 )^(3/2) ))  Let u=x/t ⇒ dx=tdu  (1/t^3 )∫(dx/((1+((x/t))^2 )^(3/2) ))=(1/t^2 )∫(du/((1+u^2 )^(3/2) ))  We use the standart trigonometric substitution:  u=tanθ du=sec^2 θdθ  (1/t^2 )∫(du/((1+u^2 )^(3/2) ))=(1/t^2 )∫((sec^2 θdθ)/((1+tan^2 θ)^(3/2) ))  And (1+tan^2 θ)^(3/2) =(sec^2 θ)^(3/2) =sec^3 θ  ⇒(1/t^2 )∫((sec^2 θdθ)/((1+tan^2 θ)^(3/2) ))=(1/t^2 )∫((sec^2 θdθ)/(sec^3 θ))=  =(1/t^2 )∫cosθdθ=(1/t^2 )sinθ  u=tanθ⇒θ=arctan(u)  ⇒(1/t^2 )sinθ=(1/t^2 ) (u/(√(1+u^2 )))=(u/(t(√(t^2 +(tu)^2 ))))=  =(1/t^2 ) (x/(√(t^2 +x^2 )))  ⇒∫_(−a) ^a  (dx/((t^2  +x^2 )^(3/2) ))=(1/t^2 )[(x/(√(t^2 +x^2 ))) ]_(−a) ^a =  =((2a)/(t^2 (√(t^2 +a^2 ))))  ⇒∫_(−a) ^a  (dx/((t^2  +x^2 )^(3/2) ))=((2a)/(t^2 (√(t^2 +a^2 ))))  Any questions?

dx(t2+x2)3/2=1t3dx(1+(xt)2)3/2Letu=x/tdx=tdu1t3dx(1+(xt)2)3/2=1t2du(1+u2)3/2Weusethestandarttrigonometricsubstitution:u=tanθdu=sec2θdθ1t2du(1+u2)3/2=1t2sec2θdθ(1+tan2θ)3/2And(1+tan2θ)3/2=(sec2θ)3/2=sec3θ1t2sec2θdθ(1+tan2θ)3/2=1t2sec2θdθsec3θ==1t2cosθdθ=1t2sinθu=tanθθ=arctan(u)1t2sinθ=1t2u1+u2=utt2+(tu)2==1t2xt2+x2aadx(t2+x2)3/2=1t2[xt2+x2]aa==2at2t2+a2aadx(t2+x2)3/2=2at2t2+a2Anyquestions?

Commented by abdo imad last updated on 20/Apr/18

you have commited a error sir alex .

youhavecommitedaerrorsiralex.

Commented by alex041103 last updated on 20/May/18

Can you point it out, so I can fix it.

Canyoupointitout,soIcanfixit.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com