All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 116796 by mnjuly1970 last updated on 08/Oct/20
...calculus...provethat::∫01(1−xp)(1−xq)xr−1log(x)dx=???log((p+q+r+1)r(p+r)(q+r))m.n.1970
Answered by mindispower last updated on 08/Oct/20
letf(a)=∫01(1−xp)(1−xq)xr−1+alog(x)dxf′(a)=∫01(1−xp)(1−xq)xr−1+alog(x).log(x)dx=∫01(xr+a−1+xp+q+r−1+a−xp+r−1+a−xq+r−1+a)dx=1r+a+1r+q+a+1−1p+r+a−1q+r+awewantf(0)f(a)=∫(1r+a+1r+q+a+1+p−1p+r+a−1q+r+a)da=ln(r+a)(r+q+p+a+1)(p+r+a)(q+r+a)+clima→∞f(a)=0⇒c=0f(0)=ln(r(p+q+r+1)(p+r)(q+r))∫01(1−xp)(1−xq)xr−1log(x)dx=ln(r(p+q+r+1)(p+r)(q+r))
Commented by mnjuly1970 last updated on 08/Oct/20
tayyeballahbravothankyou..
Commented by mindispower last updated on 08/Oct/20
withePleasur
Terms of Service
Privacy Policy
Contact: info@tinkutara.com