Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 77422 by john santu last updated on 06/Jan/20

can solve ∫ (dx/(x^(17) −1)) via   elementary calculus?

cansolvedxx171viaelementarycalculus?

Commented by aliesam last updated on 07/Jan/20

∫(1/(x^(17) −1)) dx  = −∫(1/(1−x^(17) )) ((x/x^(17) ))((x^(17) /x)) dx  =−∫(1−x)^(17−1)  (x)^(1−17)  (x)^(17−1)  dx  =−∫(1−x)^(17−1)  (x^(17) )^((1/(17))−1) (x)^(17−1)  dx  =−x_2 F_1 (1, (1/(17)) ; ((18)/(17)) ;x^(17) )+c

1x171dx=11x17(xx17)(x17x)dx=(1x)171(x)117(x)171dx=(1x)171(x17)1171(x)171dx=x2F1(1,117;1817;x17)+c

Answered by mind is power last updated on 06/Jan/20

X^(17) −1=Π_(k=0) ^(16) (x−e^((2ikπ)/(17)) )  ∫(dx/(x^(17) −1))=∫(dx/(Π_(k=0) ^(16) (x−e^((2ikπ)/(17)) )))=∫{Σ_(k=0) ^(16) (a_k /(x−e^((2ikπ)/(17)) ))}dx  a_k =(1/(17e^(((2ikπ)/(17)).16) ))=((e^(−((2ikπ)/(17)))  )/(17))  ⇒∫(dx/(x^(17) −1))=∫Σ_(k=0) ^(16) (e^((−2ikπ)/(17)) /(17(x−e^((2ikπ)/(17)) ))).dx  we can see that  Σ_(k=0) ^(16) (e^(−((2ikπ)/(17))) /(x−e^((2ikπ)/(17)) ))=((1/(x−1))+Σ_(k=1) ^8 ((e^(−((2ikπ)/(17))) /(x−e^((2ikπ)/(17)) ))+(e^((−2iπ(17−k))/(17)) /(x−e^((2i(17−k)π)/(17)) ))))  =(1/(x−1))+Σ_(k=1) ^8 ((e^(−((2ikπ)/(17))) /(x−e^((2ikπ)/(17)) ))+(e^((2ikπ)/(17)) /(x−e^((−2ikπ)/(17)) )))=(1/(x−1))+Σ_(k=1) ^8 ((2(xcos(((2kπ)/(17)))−cos(((2kπ)/(17)))))/(x^2 −2cos(((2πk)/(17)))x+1))  ∫2((xcos(((2kπ)/(17)))−cos(((2kπ)/(17))))/(x^2 −2cos(((2kπ)/(17)))x+1))dx=∫{cos(((2kπ)/(17)))((2x−2cos(((2kπ)/(17))))/(x^2 −2cos(((2kπ)/(17)))x+1))+((2cos^2 (((2kπ)/(17)))−2cos(((2kπ)/(17))))/(x^2 −2cos(((2kπ)/(17)))x+1))}dx  since ∣cos(((2kπ)/(17)))∣<1,∀k∈{1,.....8}   ∫cos(((2kπ)/(17)))((2x−2cos(((2kπ)/(17))))/(x^2 −2xcos(((2πk)/(17)))+1))=cos(((2kπ)/(17)))ln(x^2 −2xcos(((2kπ)/(17)))x+1)  ∫((2cos^2 (((2kπ)/(17)))−2cos(((2kπ)/(17))))/(x^2 −2cos(((2kπ)/(17)))x+1))=(2cos^2 (((2kπ)/(17)))−2cos(((2kπ)/(17))))∫(dx/((x−cos(((2kπ)/(17)))^2 +sin^2 (((2kπ)/(17)))))  =(2cos^2 (((2kπ)/(17)))−2cos(((2kπ)/(17))))arctan((x/(sin(((2kπ)/(17)))))−cot(((2kπ)/(17))))  we Get  ∫(dx/(x^(17) −1))=(1/(17))∫{(1/(x−1))+Σ_(k=1) ^8 cos(((2kπ)/(17)))((2x−2cos(((2kπ)/(17))))/(x^2 −2cos(((2kπ)/(17)))x+1))+(2cos^2 (((2kπ)/(17)))−2cos(((2kπ)/(17)))).(1/(x^2 −2xcos(((2kπ)/(17)))+1))}dx  =(1/(17)){ln∣x−1∣+Σ_(k=1) ^8 [cos(((2kπ)/(17)))ln(x^2 −2xcos(((2πk)/(17)))+1)+(2cos^2 (((2kπ)/(17)))−2cos(((2kπ)/(17))))arctan((x/(sin(((2kπ)/(17)))))−cot(((2kπ)/(17))))]}+c  c∈R constant

X171=16k=0(xe2ikπ17)dxx171=dx16k=0(xe2ikπ17)={16k=0akxe2ikπ17}dxak=117e2ikπ17.16=e2ikπ1717dxx171=16k=0e2ikπ1717(xe2ikπ17).dxwecanseethat16k=0e2ikπ17xe2ikπ17=(1x1+8k=1(e2ikπ17xe2ikπ17+e2iπ(17k)17xe2i(17k)π17))=1x1+8k=1(e2ikπ17xe2ikπ17+e2ikπ17xe2ikπ17)=1x1+8k=12(xcos(2kπ17)cos(2kπ17))x22cos(2πk17)x+12xcos(2kπ17)cos(2kπ17)x22cos(2kπ17)x+1dx={cos(2kπ17)2x2cos(2kπ17)x22cos(2kπ17)x+1+2cos2(2kπ17)2cos(2kπ17)x22cos(2kπ17)x+1}dxsincecos(2kπ17)∣<1,k{1,.....8}cos(2kπ17)2x2cos(2kπ17)x22xcos(2πk17)+1=cos(2kπ17)ln(x22xcos(2kπ17)x+1)2cos2(2kπ17)2cos(2kπ17)x22cos(2kπ17)x+1=(2cos2(2kπ17)2cos(2kπ17))dx(xcos(2kπ17)2+sin2(2kπ17)=(2cos2(2kπ17)2cos(2kπ17))arctan(xsin(2kπ17)cot(2kπ17))weGetdxx171=117{1x1+8k=1cos(2kπ17)2x2cos(2kπ17)x22cos(2kπ17)x+1+(2cos2(2kπ17)2cos(2kπ17)).1x22xcos(2kπ17)+1}dx=117{lnx1+8k=1[cos(2kπ17)ln(x22xcos(2πk17)+1)+(2cos2(2kπ17)2cos(2kπ17))arctan(xsin(2kπ17)cot(2kπ17))]}+ccRconstant

Commented by john santu last updated on 06/Jan/20

thanks you sir

thanksyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com