Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 58500 by Kunal12588 last updated on 24/Apr/19

change in simplest form :  tan^(−1) (((√(1+x^2 ))+(√(1−x^2 )))/((√(1+x^2 ))−(√(1−x^2 ))))

changeinsimplestform:tan11+x2+1x21+x21x2

Answered by MJS last updated on 24/Apr/19

(((√a)+(√b))/((√a)−(√b)))=((((√a)+(√b))^2 )/(((√a)−(√b))((√a)+(√b))))=((a+2(√(ab))+b)/(a−b))  ((1+x^2 +2(√((1+x^2 )(1−x^2 )))+1−x^2 )/(1+x^2 −(1−x^2 )))=  =((1+(√(1−x^4 )))/x^2 )  arctan ((1+(√(1−x^4 )))/x^2 ) =t  ⇒ x=±(√(sin 2t)) ⇒ t=((2nπ+arcsin x^2 )/2) ∨ t=(((2n+1)π−arcsin x^2 )/2)  testing values we get  arctan (((√(1+x^2 ))+(√(1−x^2 )))/((√(1+x^2 ))−(√(1−x^2 )))) =((π−arcsin x^2 )/2)

a+bab=(a+b)2(ab)(a+b)=a+2ab+bab1+x2+2(1+x2)(1x2)+1x21+x2(1x2)==1+1x4x2arctan1+1x4x2=tx=±sin2tt=2nπ+arcsinx22t=(2n+1)πarcsinx22testingvalueswegetarctan1+x2+1x21+x21x2=πarcsinx22

Commented by Kunal12588 last updated on 24/Apr/19

thank you sir, I have also written an ans  pls check.

thankyousir,Ihavealsowrittenanansplscheck.

Answered by Kunal12588 last updated on 24/Apr/19

tan^(−1) (((√(1+x^2 ))+(√(1−x^2 )))/((√(1+x^2 ))−(√(1−x^2 ))))  let x^2 =cos y  ⇒cos^(−1) x^2 =y  tan^(−1) (((√(1+cos y))+(√(1−cos y)))/((√(1+cos y))−(√(1−cos y))))  =tan^(−1) (((√2)cos(y/2)+(√2)sin(y/2))/((√2)cos(y/2)−(√2)sin(y/2)))  =tan^(−1) ((1+tan(y/2))/(1−tan(y/2)))  =tan^(−1) ((tan(π/4)+tan(y/2))/(1−tan(π/4)tan(y/2)))  =tan^(−1) (tan((π/4)+(y/2)))  =(π/4)+(y/2)  =(π/4)+(1/2)cos^(−1) x^2

tan11+x2+1x21+x21x2letx2=cosycos1x2=ytan11+cosy+1cosy1+cosy1cosy=tan12cosy2+2siny22cosy22siny2=tan11+tany21tany2=tan1tanπ4+tany21tanπ4tany2=tan1(tan(π4+y2))=π4+y2=π4+12cos1x2

Commented by MJS last updated on 24/Apr/19

good!  (π/4)+(1/2)arccos x^2  =(π/2)−(1/2)arcsin x^2

good!π4+12arccosx2=π212arcsinx2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com