Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 31069 by abdo imad last updated on 02/Mar/18

clculate  ∫_0 ^1  x(√(x^2  −2x+2)) dx

clculate01xx22x+2dx

Commented by abdo imad last updated on 03/Mar/18

let put I=∫_0 ^1  x(√(x^2  −2x +2dx))   I= ∫_0 ^1  x(√((x−1)^2  +1)) dx the ch. x−1=sht  I= ∫_(argsh(−1)) ^o  (1+sht)cht chtdt=−∫_0 ^(ln(−1+(√2))) ch^2 tdt  −∫_0 ^(ln(−1+(√2))) sht ch^2 tdt  but wehave  ∫_0 ^(ln(−1+(√2))) ch^2 tdt= ∫_0 ^(ln(−1+(√2))) ((1+ch(2t))/2)dt  =(1/2)ln(−1+(√2)) +(1/4)[sh(2t)]_0 ^(ln(−1+(√2) ))   =(1/2)ln(−1+(√2)) +(1/4)sh(2ln(−1+(√2))) and  ∫_0 ^(ln(−1+(√2))) sht ch^2 t dt=(1/3)[ ch^3 t]_0 ^(ln(−1+(√2)))   =(1/3) (ch^3 (ln(−1+(√2))−1) by using shu =((e^u  −e^(−u) )/2) and  chu= ((e^u  +e^(−u) )/2) tbe value of I isdetermined.

letputI=01xx22x+2dxI=01x(x1)2+1dxthech.x1=shtI=argsh(1)o(1+sht)chtchtdt=0ln(1+2)ch2tdt0ln(1+2)shtch2tdtbutwehave0ln(1+2)ch2tdt=0ln(1+2)1+ch(2t)2dt=12ln(1+2)+14[sh(2t)]0ln(1+2)=12ln(1+2)+14sh(2ln(1+2))and0ln(1+2)shtch2tdt=13[ch3t]0ln(1+2)=13(ch3(ln(1+2)1)byusingshu=eueu2andchu=eu+eu2tbevalueofIisdetermined.

Answered by Joel578 last updated on 02/Mar/18

I = ∫_0 ^1  (x − 1 + 1)(√(x^2  − 2x + 2)) dx     = ∫_0 ^1  (x − 1)(√(x^2  − 2x + 2)) dx + ∫_0 ^1  (√((x −1)^2  + 1)) dx    I_1  = ∫ (x − 1)(√(x^2  − 2x + 2)) dx  u = x^2  − 2x + 2  →  du = 2(x −1) dx  I_1  = (1/2)∫ (x − 1)(√u) . (du/(x − 1))       = (1/3)u(√u) = (1/3)(x^2  − 2x + 2)^(3/2)  + C    I_2  = ∫ (√((x − 1)^2  + 1)) dx  x − 1 = tan θ  →  dx = sec^2  θ dθ  I_2  = ∫ (√(tan^2  θ + 1)) . sec^2  θ dθ       = ∫ sec^3  θ dθ       = ((tan θ sec θ)/2) − (1/2)ln ∣sec θ + tan θ∣ + C       = (((x − 1)(√(x^2  − 2x + 2)))/2) − (1/2)ln ∣(√(x^2  − 2x + 2)) + x − 1∣ + C    I = [I_1  + I_2 ]_0 ^1      = [(1/3)(x^2  − 2x + 2)^(3/2)  + (((x − 1)(√(x^2  − 2x + 2)))/2) − (1/2)ln ∣(√(x^2  − 2x + 2)) + x − 1∣]_0 ^1      = ((1/3) + 0 − 0) − (((2(√2))/3) − ((√2)/2) − (1/2)ln ((√2) − 1))     = ((1 − 2(√2))/3) + (1/2)((√2) + ln ((√2) − 1))

I=01(x1+1)x22x+2dx=01(x1)x22x+2dx+01(x1)2+1dxI1=(x1)x22x+2dxu=x22x+2du=2(x1)dxI1=12(x1)u.dux1=13uu=13(x22x+2)32+CI2=(x1)2+1dxx1=tanθdx=sec2θdθI2=tan2θ+1.sec2θdθ=sec3θdθ=tanθsecθ212lnsecθ+tanθ+C=(x1)x22x+2212lnx22x+2+x1+CI=[I1+I2]01=[13(x22x+2)32+(x1)x22x+2212lnx22x+2+x1]01=(13+00)(2232212ln(21))=1223+12(2+ln(21))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com