Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 148077 by mathdanisur last updated on 25/Jul/21

∫ ((cos^n x)/(sinx)) dx = ?

cosnxsinxdx=?

Answered by Olaf_Thorendsen last updated on 26/Jul/21

I_n (x) = ∫((cos^n x)/(sinx)) dx    • I_0 (x) = ∫(dx/(sinx)) dx  Let t = tan(x/2)  I_0 (x) = ∫(1/((2t)/(1+t^2 ))).((2dt)/(1+t^2 ))  I_0 (x) = ln∣t∣+C = ln∣tan(x/2)∣+C    • I_1 (x) = ∫((cosx)/(sinx)) dx = ln∣sinx∣+C    • k ≥ 2  I_k (x)−I_(k−2) (x) = ∫((cos^(k−2) x(cos^2 x−1))/(sinx)) dx  I_k (x)−I_(k−2) (x) = −∫sinx.cos^(k−2) x dx  I_k (x)−I_(k−2) (x) = (1/(k−1))cos^(k−1) x    • If k is even, k = 2p  Σ_(p=1) ^n I_(2p) (x)−Σ_(p=1) ^n I_(2p−2) (x) = Σ_(p=1) ^n (1/(2p−1))cos^(2p−1) x  I_(2n) (x)−I_0 (x) = Σ_(p=1) ^n ((cos^(2p−1) x)/(2p−1))  I_(2n) (x) = ln∣tan(x/2)∣+ Σ_(p=1) ^n ((cos^(2p−1) x)/(2p−1))+C    • If k is odd, k = 2p+1  Σ_(p=1) ^n I_(2p+1) (x)−Σ_(p=1) ^n I_(2p−1) (x) = Σ_(p=1) ^n (1/(2p))cos^(2p) x  I_(2n+1) (x)−I_1 (x) = (1/2)Σ_(p=1) ^n ((cos^(2p) x)/p)  I_(2n+1) (x) = ln∣sinx∣+(1/2) Σ_(p=1) ^n ((cos^(2p) x)/p)+C

In(x)=cosnxsinxdxI0(x)=dxsinxdxLett=tanx2I0(x)=12t1+t2.2dt1+t2I0(x)=lnt+C=lntanx2+CI1(x)=cosxsinxdx=lnsinx+Ck2Ik(x)Ik2(x)=cosk2x(cos2x1)sinxdxIk(x)Ik2(x)=sinx.cosk2xdxIk(x)Ik2(x)=1k1cosk1xIfkiseven,k=2pnp=1I2p(x)np=1I2p2(x)=np=112p1cos2p1xI2n(x)I0(x)=np=1cos2p1x2p1I2n(x)=lntanx2+np=1cos2p1x2p1+CIfkisodd,k=2p+1np=1I2p+1(x)np=1I2p1(x)=np=112pcos2pxI2n+1(x)I1(x)=12np=1cos2pxpI2n+1(x)=lnsinx+12np=1cos2pxp+C

Commented by mathdanisur last updated on 25/Jul/21

Thankyou Sir, answer.?

ThankyouSir,answer.?

Commented by puissant last updated on 26/Jul/21

prof desole mais I_1 =ln∣sin(x)∣+C  car (ln(u))′=((u′)/u)  avec  u=sin(x)..

profdesolemaisI1=lnsin(x)+Ccar(ln(u))=uuavecu=sin(x)..

Commented by Olaf_Thorendsen last updated on 26/Jul/21

Bien vu !  (mais je ne suis pas prof).

Bienvu!(maisjenesuispasprof).

Commented by puissant last updated on 26/Jul/21

d′accord monsieur olaf..

daccordmonsieurolaf..

Answered by mathmax by abdo last updated on 25/Jul/21

A_n =∫  ((cos^n x)/(sinx))dx ⇒A_(2n) =∫  ((cos^(2n) x)/(sinx))dx  =∫  (((1−sin^2 x)^n )/(sinx))dx =(−1)^n  ∫  (((sin^2 x−1)^n )/(sinx))dx  =(−1)^n  ∫  ((Σ_(k=0) ^n  C_n ^k  sin^(2k) x(−1)^(n−k) )/(sinx))dx  =Σ_(k=0) ^n  C_n ^k  (−1)^k   ∫sin^(2k−1)  x dx  =∫ (dx/(sinx)) +Σ_(k=0) ^n  C_n ^k (−1)^k   ∫  (((e^(ix) −e^(−ix) )/2))^(2k−1) dx  =∫  (dx/(sinx)) +Σ_(k=0) ^n  (−1)^k  C_n ^k  (1/2^(2k−1) )∫ Σ_(p=0) ^(2k−1)  (e^(ix) )^p  (−e^(−ix) )^(2k−1−p ) dx  =∫ (dx/(sinx)) +Σ_(k=0) ^n  (((−1)^k )/2^(2k−1) )C_n ^k  (Σ_(p=0) ^(2k−1) (−1)^(2k−1−p)  ∫  e^(ipx)  e^(−i(2k−1)x+ipxdx)   =∫ (dx/(sinx)) +Σ_(k=0) ^n  (((−1)^k )/2^(2k−1) )C_n ^k (Σ_(p=0) ^(2k−1) (−1)^(p+1) ∫  e^(i(2p−2k+1)x) dx)  =∫ (dx/(sinx))+Σ_(k=0) ^n  (((−1)^k )/2^(2k−1) )C_n ^k  (Σ_(p=0) ^(2k−1) (((−1)^(p+1) )/(i(2p−2k+1)))e^(i(2p−2k+1)x) +λ)  rest to find A_(2n+1) ....be continued....

An=cosnxsinxdxA2n=cos2nxsinxdx=(1sin2x)nsinxdx=(1)n(sin2x1)nsinxdx=(1)nk=0nCnksin2kx(1)nksinxdx=k=0nCnk(1)ksin2k1xdx=dxsinx+k=0nCnk(1)k(eixeix2)2k1dx=dxsinx+k=0n(1)kCnk122k1p=02k1(eix)p(eix)2k1pdx=dxsinx+k=0n(1)k22k1Cnk(p=02k1(1)2k1peipxei(2k1)x+ipxdx=dxsinx+k=0n(1)k22k1Cnk(p=02k1(1)p+1ei(2p2k+1)xdx)=dxsinx+k=0n(1)k22k1Cnk(p=02k1(1)p+1i(2p2k+1)ei(2p2k+1)x+λ)resttofindA2n+1....becontinued....

Commented by mathdanisur last updated on 25/Jul/21

Thankyou Sir, answer.?

ThankyouSir,answer.?

Commented by mathmax by abdo last updated on 25/Jul/21

A_(2n) =∫ (dx/(sinx))+Σ_(k=1) ^n (....)

A2n=dxsinx+k=1n(....)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com