All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 67960 by aseer imad last updated on 02/Sep/19
ddx[tan−14x1−4x2]orddxtan−1(2tanθ)[where2x=sinθ]whichcomeslaterifdoneconsidering2x=sinθpleasehelp
Commented by Prithwish sen last updated on 02/Sep/19
Lety=tan−14x1−4x2Nowconsidering2x=sinθdiff.w.r.tθwegetdxdθ=12Cosθ=121−4x2Nowtheoriginalexpressionturnsouty=tan−1(2tanθ)againdiff.w.r.tθdydθ=11+4tan2θ.2sec2θ=21+12x2∴dydx=dydθ.dθdx=4(1+12x2)1−4x2Itcanbedoneindirectmethoddydx=11+(4x1−4x2)2.41−4x2+4x.8x21−4x21−4x2=1−4x21−4x2+16x2.4(1−4x2)+16x2(1−4x2)1−4x2=4(1+12x2)1−4x2pleasecheck.
Commented by MJS last updated on 02/Sep/19
ddx[arctanu(x)]=u′(x)(u(x))2+1u(x)=4x1−4x2u′(x)=4(1−4x2)3(u(x))2+1=12x2+11−4x2u′(x)(u(x))2+1=4(12x2+1)1−4x2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com