Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 119425 by mathmax by abdo last updated on 24/Oct/20

decompose F(x) =((2x−1)/((x^2 −1)^2 (x^2 +3)))  and calculate ∫_(√2) ^(+∞) F(x)dx

decomposeF(x)=2x1(x21)2(x2+3)andcalculate2+F(x)dx

Answered by 1549442205PVT last updated on 24/Oct/20

F(x) =((2x−1)/((x^2 −1)^2 (x^2 +3)))=((ax+b)/(x^2 +3))+((mx^3 +nx^2 +px+q)/(x^4 −2x^2 +1))  ⇔(a+m)x^5 +(b+n)x^4 +(3m+p−2a)x^3   +(3n+q−2b)x^2 +(a+3p)x+b+3q=2x−1  ⇔ { ((a+m=0)),((b+n=0)),((3m+p−2a=0)),((3n+q−2b=0)),((a+3p=2)),((b+3q=−1)) :} { ((5m+p=0)),((5n+q=0)),((−m+3p=2)),((−n+3q=−1)) :}  16q=−5⇒q=−5/16⇒n=1/16  16p=10⇒p=10/16⇒m=−2/16  ⇒a=2/16,b=−1/16  Hence we have  F(x) =((2x−1)/((x^2 −1)^2 (x^2 +3)))  =((2x−1)/(16(x^2 +3)))−((2x^3 −x^2 −10x+5)/(16(x^2 −1)^2 ))  2x^3 −x^2 −10x+5=(x^2 −1)(2x−1)−8x+4  ⇒((2x^3 −x^2 −10x+5)/(16(x^2 −1)^2 ))=((2x−1)/(16(x^2 −1)))−((8x−4)/(16(x^2 −1)^2 ))  (2/(x^2 −1))=(1/(x−1))−(1/(x+1))=a−b⇒2ab=a−b  ⇒(4/((x^2 −1)^2 ))=(a−b)^2 =a^2 +b^2 −(a−b)  ⇒F(x)=((2x−1)/(16(x^2 +3)))−((2x−1)/(16(x^2 −1)))+((4(2x−1))/(16(x^2 −1)^2 ))  ∫_(√2) ^∞ F(x)=∫_(√2) ^∞ ((d(x^2 +3))/(16(x^2 +3))−(1/(16))∫_(√2) ^∞ (dx/((x^2 +3)))  −(1/(16))∫_(√2) ^∞ ((d(x^2 −1))/(x^2 −1))+(1/(16))∫_(√2) ^∞ (dx/(x^2 −1))+(1/4)∫_(√2) ^∞ ((d(x^2 −1))/((x^2 −1)^2 ))  −(1/4)∫_(√2) ^∞ (dx/((x^2 −1)^2 )) (1).We have  J=(1/(16))∫_(√2) ^∞ (dx/((x^2 −1)))=(1/(32))∫_(√2) ^∞ ((1/(x−1))−(1/(x+1)))dx  =(1/(32))ln∣((x−1)/(x+1))∣_(√2) ^∞ =−(1/(32))ln(((√2)−1)/( (√2)+1))=−(1/(16))ln((√2)−1)  I=(1/4)∫_(√2) ^∞ (dx/((x^2 −1)^2 ))=(1/(16))∫_(√2) ^∞ ((1/(x−1))−(1/(x+1)))^2 dx=  (1/(16))∫_(√2) ^∞ ((1/((x−1)^2 ))+(1/((x+1)^2 ))−(1/(x−1))+(1/(x+1)))dx(2)  =(1/(16))[[−(1/(x−1))−(1/(x+1))+ln∣((x+1)/(x−1∣))]_(√2) ^∞   =(1/(64))((1/( (√2)−1))+(1/( (√2)+1))−ln(((√2)+1)/( (√2)−1)))=(1/(16))[2(√2) −2ln((√2)+1)]  From (1)(2)we get  ∫_(√2) ^∞ F(x) dx=∫_(√2) ^∞ ((2x−1)/((x^2 −1)^2 (x^2 +3)))dx  =[(1/(16))ln(x^2 +3)−(1/(16)).(1/( (√3)))tan^(−1) ((x/( (√3))))  −(1/(16))ln∣x^2 −1∣−(1/(4(x^2 −1)))]_(√2) ^∞ +J−I  =(1/(16))ln((x^2 +3)/(x^2 −1))−(1/(16(√3)))tan^(−1) ((x/( (√3))))−(1/(4(x^2 −1)))]_(√2) ^∞   −(1/(16))ln((√2)−1)−(1/(16))(2(√2)−2ln(1+(√2) )  =−(π/(32(√3)))−(1/(16))ln5+(1/(16(√3)))tan^(−1) (((√6)/3))+(1/4)  −((√2)/8)+(3/(16))ln((√2) +1)≈0.1059174283

F(x)=2x1(x21)2(x2+3)=ax+bx2+3+mx3+nx2+px+qx42x2+1(a+m)x5+(b+n)x4+(3m+p2a)x3+(3n+q2b)x2+(a+3p)x+b+3q=2x1{a+m=0b+n=03m+p2a=03n+q2b=0a+3p=2b+3q=1{5m+p=05n+q=0m+3p=2n+3q=116q=5q=5/16n=1/1616p=10p=10/16m=2/16a=2/16,b=1/16HencewehaveF(x)=2x1(x21)2(x2+3)=2x116(x2+3)2x3x210x+516(x21)22x3x210x+5=(x21)(2x1)8x+42x3x210x+516(x21)2=2x116(x21)8x416(x21)22x21=1x11x+1=ab2ab=ab4(x21)2=(ab)2=a2+b2(ab)F(x)=2x116(x2+3)2x116(x21)+4(2x1)16(x21)22F(x)=2d(x2+3)16(x2+31162dx(x2+3)1162d(x21)x21+1162dxx21+142d(x21)(x21)2142dx(x21)2(1).WehaveJ=1162dx(x21)=1322(1x11x+1)dx=132lnx1x+12=132ln212+1=116ln(21)I=142dx(x21)2=1162(1x11x+1)2dx=1162(1(x1)2+1(x+1)21x1+1x+1)dx(2)=116[[1x11x+1+lnx+1x1]2=164(121+12+1ln2+121)=116[222ln(2+1)]From(1)(2)weget2F(x)dx=22x1(x21)2(x2+3)dx=[116ln(x2+3)116.13tan1(x3)116lnx2114(x21)]2+JI=116lnx2+3x211163tan1(x3)14(x21)]2116ln(21)116(222ln(1+2)=π323116ln5+1163tan1(63)+1428+316ln(2+1)0.1059174283

Commented by Bird last updated on 24/Oct/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com