Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33334 by prof Abdo imad last updated on 14/Apr/18

decompose F(x)= (x^2 /(x^4  −1)) imside R(x)   2) find the value of    ∫_2 ^(+∞)   (x^2 /(x^4  −1))  .

decomposeF(x)=x2x41imsideR(x)2)findthevalueof2+x2x41.

Commented by prof Abdo imad last updated on 15/Apr/18

2) find the value of ∫_2 ^(+∞)   (x^2 /(x^4  −1))  dx.

2)findthevalueof2+x2x41dx.

Commented by prof Abdo imad last updated on 18/Apr/18

we have F(x)=  (x^2 /((x^2  −1)(x^2  +1)))  =((x^2  −1 +1)/((x^2 −1)(x^2  +1))) =  (1/(x^2  +1))  + (1/((x^2 −1)(x^2  +1)))  let decompose g(x)=  (1/((x^2 −1)(x^2  +1)))  g(x) =  (a/(x−1)) +(b/(x+1))  + ((cx+d)/(x^2  +1))  g(−x)=g(x)⇔ ((−a)/(x+1))   +((−b)/(x−1))  +((−cx +d)/(x^2  +1))   = g(x) ⇒ b=−a  and c=0  ⇒  g(x)= (a/(x−1)) −(a/(x+1))  + (d/(x^2  +1))  g(0) = −1 = −2a +d  ⇒ 2a −d =1  g(2) = (1/(3 .5)) =(1/(15)) = a −(a/3) +(d/5) = ((2a)/3) +(d/5) ⇒  1 = 10a +3d  ⇒ 10a +3(2a−1) =1 ⇒  16a =4 ⇒ a = (1/4) and d =(1/2) −1=−(1/2)  g(x) =  (1/(4(x−1))) −(1/(4(x+1))) − (1/(2(x^2  +1))) ⇒  F(x)=  (1/(x^2  +1))  +(1/(4(x−1))) −(1/(4(x+1))) −(1/(2(x^2  +1)))  F(x)=  (1/(2(x^2  +1)))  + (1/(4(x−1))) −(1/(4(x+1)))

wehaveF(x)=x2(x21)(x2+1)=x21+1(x21)(x2+1)=1x2+1+1(x21)(x2+1)letdecomposeg(x)=1(x21)(x2+1)g(x)=ax1+bx+1+cx+dx2+1g(x)=g(x)ax+1+bx1+cx+dx2+1=g(x)b=aandc=0g(x)=ax1ax+1+dx2+1g(0)=1=2a+d2ad=1g(2)=13.5=115=aa3+d5=2a3+d51=10a+3d10a+3(2a1)=116a=4a=14andd=121=12g(x)=14(x1)14(x+1)12(x2+1)F(x)=1x2+1+14(x1)14(x+1)12(x2+1)F(x)=12(x2+1)+14(x1)14(x+1)

Commented by math khazana by abdo last updated on 19/Apr/18

∫_2 ^(+∞)   (x^2 /(x^4 −1))dx = (1/2) ∫_2 ^(+∞)    (dx/(1+x^2 ))  +(1/4) ∫_2 ^(+∞)  ((1/(x−1)) −(1/(x+1)))dx  = (1/2)[ arctanx^ ]_2 ^(+∞)    +(1/4) [ ln∣((x−1)/(x+1))∣]_2 ^(+∞)   =(1/2)( (π/2) −arctan2)   +(1/4)(−ln((1/3)))  =(π/4) −(1/2) arctan(2)  +(1/4)ln(3)  .

2+x2x41dx=122+dx1+x2+142+(1x11x+1)dx=12[arctanx]2++14[lnx1x+1]2+=12(π2arctan2)+14(ln(13))=π412arctan(2)+14ln(3).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com