Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 33843 by prof Abdo imad last updated on 25/Apr/18

decompose inside R(x) the fraction  F(x)=  (1/((x+3)^n  (x+1))) with n integr .

decomposeinsideR(x)thefractionF(x)=1(x+3)n(x+1)withnintegr.

Commented by abdo imad last updated on 28/Apr/18

let use x+3=t ⇒F(x)=g(t)= (1/(t^n (t−2))) let find D_(n−1) (0)for  g(t)= (1/(t−2)) we have g(t)=Σ_(k=0) ^(n−1)   ((g^((k)) (0))/(k!))t^k  +(t^n /(n!))ξ(t) with  ξ(t)_(t→0) →0    but  g^((k)) (t)= (((−1)^k k!)/((t−2)^(k+1) )) ⇒g^((k)) (0) =(((−1)^k k!)/((−1)^(k+1) 2^(k+1) ))  =−((k!)/2^(k+1) ) ⇒g(t)=Σ_(k=0) ^(n−1) ( −(t^k /2^(k+1) ) ) +(t^n /(n!))ξ(t)  g(t) = Σ_(k=1) ^(n−1)  (λ_k /t^k )  +(λ_n /t^n ) + (a/(t−2))  a=lim_(t→2) (g−2)g(t) =(1/2^n )  λ_n =lim_(t→0)  t^n g(t) =−(1/2) ⇒ g(t) =Σ_(k=1) ^n  (λ_k /t^k ) −(1/(2t^n )) +(1/(2^n (t−2)))  from another side g(t)=−(1/t^n )Σ_(k=0) ^(n−1)    (t^k /2^(k+1) ) +(1/(n!)) ξ(t)  =−Σ_(k=0) ^(n−1)     (1/(t^(n−k)  2^(k+1) )) +(1/(n!))ξ(t) changement of indice   n−k =p give g(t)=−Σ_(p=1) ^(n−1)    (1/(t^p  2^(n−p +1) )) +(1/(n!)) ξ(t)  =Σ_(k=1) ^(n−1)     −(1/(2^(n−k +1)  t^k )) +(1/(n!))ξ(t) ⇒λ_k =((−1)/2^(n−k+1) ) ⇒  g(t)=Σ_(k=1) ^(n−1)    ((−1)/(2^(n−k+1)  t^k )) −(1/(2t^n )) + (1/(2^n (t−2))) ⇒  F(x)=Σ_(k=1) ^(n−1)   ((−1)/(2^(n−k+1) (x+3))) −(1/(2(x+3)^n )) +(1/(2^n (x+1))) .

letusex+3=tF(x)=g(t)=1tn(t2)letfindDn1(0)forg(t)=1t2wehaveg(t)=k=0n1g(k)(0)k!tk+tnn!ξ(t)withξ(t)t00butg(k)(t)=(1)kk!(t2)k+1g(k)(0)=(1)kk!(1)k+12k+1=k!2k+1g(t)=k=0n1(tk2k+1)+tnn!ξ(t)g(t)=k=1n1λktk+λntn+at2a=limt2(g2)g(t)=12nλn=limt0tng(t)=12g(t)=k=1nλktk12tn+12n(t2)fromanothersideg(t)=1tnk=0n1tk2k+1+1n!ξ(t)=k=0n11tnk2k+1+1n!ξ(t)changementofindicenk=pgiveg(t)=p=1n11tp2np+1+1n!ξ(t)=k=1n112nk+1tk+1n!ξ(t)λk=12nk+1g(t)=k=1n112nk+1tk12tn+12n(t2)F(x)=k=1n112nk+1(x+3)12(x+3)n+12n(x+1).

Commented by abdo imad last updated on 28/Apr/18

★F(x)= Σ_(k=1) ^(n−1)   ((−1)/(2^(n−k+1) (x+3)^k )) −(1/(2(x+3)^n )) + (1/(2^n (x+1))) .★

F(x)=k=1n112nk+1(x+3)k12(x+3)n+12n(x+1).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com