All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 33843 by prof Abdo imad last updated on 25/Apr/18
decomposeinsideR(x)thefractionF(x)=1(x+3)n(x+1)withnintegr.
Commented by abdo imad last updated on 28/Apr/18
letusex+3=t⇒F(x)=g(t)=1tn(t−2)letfindDn−1(0)forg(t)=1t−2wehaveg(t)=∑k=0n−1g(k)(0)k!tk+tnn!ξ(t)withξ(t)t→0→0butg(k)(t)=(−1)kk!(t−2)k+1⇒g(k)(0)=(−1)kk!(−1)k+12k+1=−k!2k+1⇒g(t)=∑k=0n−1(−tk2k+1)+tnn!ξ(t)g(t)=∑k=1n−1λktk+λntn+at−2a=limt→2(g−2)g(t)=12nλn=limt→0tng(t)=−12⇒g(t)=∑k=1nλktk−12tn+12n(t−2)fromanothersideg(t)=−1tn∑k=0n−1tk2k+1+1n!ξ(t)=−∑k=0n−11tn−k2k+1+1n!ξ(t)changementofindicen−k=pgiveg(t)=−∑p=1n−11tp2n−p+1+1n!ξ(t)=∑k=1n−1−12n−k+1tk+1n!ξ(t)⇒λk=−12n−k+1⇒g(t)=∑k=1n−1−12n−k+1tk−12tn+12n(t−2)⇒F(x)=∑k=1n−1−12n−k+1(x+3)−12(x+3)n+12n(x+1).
★F(x)=∑k=1n−1−12n−k+1(x+3)k−12(x+3)n+12n(x+1).★
Terms of Service
Privacy Policy
Contact: info@tinkutara.com