Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 96658 by mathmax by abdo last updated on 03/Jun/20

determine L(e^(−x^2 −x) )   with L laplace transform

determineL(ex2x)withLlaplacetransform

Answered by mathmax by abdo last updated on 04/Jun/20

L(e^(−x^2 −x) ) =∫_0 ^∞  e^(−t^2 −t)  e^(−xt)  dt =∫_0 ^∞  e^(−t^2 −(x+1)t)  dt  =∫_0 ^∞  e^(−(t^2  +2t×((x+1)/2) +(((x+1)^2 )/4)−(((x+1)^2 )/4)))  =e^(((x+1)^2 )/4)  ∫_0 ^∞   e^(−{t+((x+1)/2)}^2 ) dt  =_(t+((x+1)/2)=u)   e^(((x+1)^2 )/4)  ∫_((x+1)/2) ^∞  e^(−u^2 ) du =e^(((x+1)^2 )/4)  { ∫_((x+1)/2) ^0  e^(−u^2 ) du +∫_0 ^∞  e^(−u^2 ) du}  =e^(((x+1)^2 )/4) {(π/2)−∫_0 ^((x+1)/2)  e^(−u^2 ) du} ⇒  L(e^(−x^2 −x) ) =(π/2)e^(((x+1)^2 )/4)  −e^(((x+1)^2 )/4)  ∫_0 ^((x+1)/2)  e^(−u^2 ) du

L(ex2x)=0et2textdt=0et2(x+1)tdt=0e(t2+2t×x+12+(x+1)24(x+1)24)=e(x+1)240e{t+x+12}2dt=t+x+12=ue(x+1)24x+12eu2du=e(x+1)24{x+120eu2du+0eu2du}=e(x+1)24{π20x+12eu2du}L(ex2x)=π2e(x+1)24e(x+1)240x+12eu2du

Commented by mathmax by abdo last updated on 04/Jun/20

sorry L(e^(−x^2 −x) ) = e^(((x+1)^2 )/2) {((√π)/2) −∫_0 ^((x+1)/2)  e^(−u^2 ) du} ⇒  L(e^(−x^2 −x) ) =((√π)/2) e^(((x+1)^2 )/4)  −e^(((x+1)^2 )/4)  ∫_0 ^((x+1)/2)  e^(−u^2 )  du

sorryL(ex2x)=e(x+1)22{π20x+12eu2du}L(ex2x)=π2e(x+1)24e(x+1)240x+12eu2du

Terms of Service

Privacy Policy

Contact: info@tinkutara.com