All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 116738 by Eric002 last updated on 06/Oct/20
determinetheareaoftheregionboundedbyy=(2x+6)0.5andy=x−1
Commented by bobhans last updated on 06/Oct/20
Answered by 1549442205PVT last updated on 06/Oct/20
Questionshouldbe:Calculatetheareaofregionboundedbycurvey=2x+6,theliney=x−1andtheOxWefindtheintersectionofline(d):y=x−1andthecurveC:y=2x+6x−1=2x+6⇔2x+6=x2−2x+1(x⩾1)⇔x2−4x−5=0⇔(x+1)(x−5)=0⇔x=5⇒y=4.⇒C∩d=B(5;4)C∩Ox=A(−3;0),d∩Ox=C(1;0).HenceTheareaofregionboundedbyC,dandtheasixOxequaltoS=∫−352x+6dx−∫15(x−1)dxPut2x+6=u⇒2x+6=u2⇒dx=udu∫2x+6dx=∫u2du=u33⇒S=(2x+6)2x+63∣−35−[x22−x]15==643−7.5−0.5=643−8=403S=403
Terms of Service
Privacy Policy
Contact: info@tinkutara.com