Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 92910 by s.ayeni14@yahoo.com last updated on 09/May/20

∫(dt/(3sint+4cost))

dt3sint+4cost

Commented by msup by abdo last updated on 09/May/20

I=∫ (dt/(3sint +4cost)) vhangement  tan((t/2))=x give  I =∫     ((2dx)/((1+x^2 )(3×((2x)/(1+x^2 ))+4×((1−x^2 )/(1+x^2 )))))  =2 ∫    (dx/(6x+4−4x^2 ))=∫  (dx/(−2x^2 +3x+2))  =−∫   (dx/(2x^2 −3x−2))  Δ=9−4(−4) =25 ⇒  x_1 =((3+5)/4) =2 and x_2 =((3−5)/4)=−(1/2)  I =−∫  (dx/(2(x−2)(x+(1/2))))  =−(1/2)×(2/5)∫ ((1/(x−2))−(1/(x+(1/2))))dx  =−(1/5)ln∣((x−2)/(x+(1/2)))∣ +C  =−(1/5)ln∣((2x−4)/(2x+1))∣ +C  =−(1/5)ln∣((2tan((x/2))−4)/(2tan((x/2))+1))∣ +C

I=dt3sint+4costvhangementtan(t2)=xgiveI=2dx(1+x2)(3×2x1+x2+4×1x21+x2)=2dx6x+44x2=dx2x2+3x+2=dx2x23x2Δ=94(4)=25x1=3+54=2andx2=354=12I=dx2(x2)(x+12)=12×25(1x21x+12)dx=15lnx2x+12+C=15ln2x42x+1+C=15ln2tan(x2)42tan(x2)+1+C

Commented by i jagooll last updated on 10/May/20

(1/5)∫ (dt/(cos (t−θ))) , where tan θ=(3/4)  = (1/5)∫ sec (t−θ) d(t−θ)   =(1/5)ln ∣sec (t−θ)+tan (t−θ)∣ +c   = (1/5)ln ∣(1/(cos tcos θ+sin tsin θ))+((tan t−tan θ)/(1+tan t.tan θ))∣+c  =(1/5)ln∣(1/((4/5)cos t+(3/5)sin t)) +((tan t−(3/4))/(1+(3/4)tan t))∣+c

15dtcos(tθ),wheretanθ=34=15sec(tθ)d(tθ)=15lnsec(tθ)+tan(tθ)+c=15ln1costcosθ+sintsinθ+tanttanθ1+tant.tanθ+c=15ln145cost+35sint+tant341+34tant+c

Answered by mr W last updated on 09/May/20

=(1/5)∫(dt/((3/5) sin t+(4/5) cos t))  =(1/5)∫(dt/(sin α sin t+cos α cos t))  =(1/5)∫((d(t−α))/(cos (t−α)))  =(1/5)∫(du/(cos u)) with u=t−α  =(1/5)∫((d (sin u))/(1−sin^2   u))  =(1/5)∫(dv/(1−v^2 )) with v=sin u=sin (t−α)  =(1/(10))∫((1/(1−v))+(1/(1+v)))dv  =(1/(10))ln ∣((1+v)/(1−v))∣+C  =(1/(10))ln ∣((1+sin (t−α))/(1−sin (t−α)))∣+C  =(1/(10))ln ∣((1+sin t cos α−sin α cos t)/(1−sin t cos α+sin α cos t))∣+C  =(1/(10))ln ∣((5+4 sin t−3 cos t)/(5−4 sin t+3 cos t))∣+C

=15dt35sint+45cost=15dtsinαsint+cosαcost=15d(tα)cos(tα)=15ducosuwithu=tα=15d(sinu)1sin2u=15dv1v2withv=sinu=sin(tα)=110(11v+11+v)dv=110ln1+v1v+C=110ln1+sin(tα)1sin(tα)+C=110ln1+sintcosαsinαcost1sintcosα+sinαcost+C=110ln5+4sint3cost54sint+3cost+C

Commented by s.ayeni14@yahoo.com last updated on 09/May/20

sir how?

sirhow?

Commented by mr W last updated on 09/May/20

how are you?

howareyou?

Commented by s.ayeni14@yahoo.com last updated on 09/May/20

by the integrals of the form ∫(1/(a+bsint+ccost))dt  then set x=(t/2)

bytheintegralsoftheform1a+bsint+ccostdtthensetx=t2

Commented by mr W last updated on 09/May/20

what happens if one doesn′t do that  way but solves the question nevertheless?

whathappensifonedoesntdothatwaybutsolvesthequestionnevertheless?

Commented by mr W last updated on 09/May/20

can you tell me where the error is in my  way?

canyoutellmewheretheerrorisinmyway?

Commented by Ar Brandon last updated on 09/May/20

��It wasn't gonna make a great difference if Mr W used the same method everyone's currently using to arrive at the answer. Thanks Mr W for drawing my attention to your method.��

Commented by Ar Brandon last updated on 09/May/20

I understood your method and now feel  I could arrive at the answer at level  (1/5)∫(1/(cos u))du=(1/5)ln∣sec u+tan u∣

IunderstoodyourmethodandnowfeelIcouldarriveattheansweratlevel151cosudu=15lnsecu+tanu

Answered by s.ayeni14@yahoo.com last updated on 09/May/20

x=tan(t/2)  3sint+4cost=((6x)/(1+x^2 ))+((4(1−3^2 ))/(1+x^2 ))  =((4+6x−4x^2 )/(1+x^2 ))  ∫(dt/(3sint+4cost))=∫((1+x^2 )/(4+6x−4x^2 ))(((2dx)/(1+x^2 )))  =∫(1/(2+3x−2x^2 ))dx  =(1/2)∫(1/(1+(3/2)−x^2 ))dx  1+(3/2)x−x^2 =((5/4))^2 −(x−(3/4))^2   (1/2)∫(1/(((5/4))^2 −(x−(3/4))^2 ))dx=(1/5)ln{((1+2x)/(4−2x))}+C  =(1/5)ln{((1+2tan(t/2))/(4−2tan(t/2)))}+C

x=tant23sint+4cost=6x1+x2+4(132)1+x2=4+6x4x21+x2dt3sint+4cost=1+x24+6x4x2(2dx1+x2)=12+3x2x2dx=1211+32x2dx1+32xx2=(54)2(x34)2121(54)2(x34)2dx=15ln{1+2x42x}+C=15ln{1+2tant242tant2}+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com