Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 103825 by mohammad17 last updated on 17/Jul/20

∫ (dx/((1−sinx)^2 )) ?

dx(1sinx)2?

Answered by ~blr237~ last updated on 17/Jul/20

 ∫ ((1+2sinx+(1−cos^2 x))/(cos^4 x))dx  ∫ [ 2(1+tan^2 x)+2(1+tan^2 x)tan^2 x +((2sinx)/((cosx)^4 )) −(1/(cos^2 x)))dx

1+2sinx+(1cos2x)cos4xdx[2(1+tan2x)+2(1+tan2x)tan2x+2sinx(cosx)41cos2x)dx

Commented by mohammad17 last updated on 17/Jul/20

how this sir

howthissir

Answered by mathmax by abdo last updated on 17/Jul/20

let f(a) =∫  (dx/(a−sinx))  we have f^′ (a) =−∫  (dx/((a−sinx)^2 )) ⇒  ∫ (dx/((a−sinx)^2 )) =−f^′ (a) and ∫ (dx/((1−sinx)^2 )) =−f^′ (1) let explicite f(a)  changement tan((x/2))=t give f(a) =∫  ((2dt)/((1+t^2 )(a−((2t)/(1+t^2 )))))  =∫ ((2dt)/(a+at^2 −2t)) =∫ ((2dt)/(at^2 −2t +a))  Δ^′  =1−a^2  let take a>1 ⇒ Δ^′ <0 ⇒f(a) =(2/a)∫ (dt/(t^2 −((2t)/a) +1))  =(2/a)∫  (dt/(t^2 −2(t/a) +(1/a^2 ) +1−(1/a^2 ))) =(2/a)∫  (dt/((t−(1/a))^2  +((a^2 −1)/a^2 )))  =_(t−(1/a)=((√(a^2 −1))/a)u)     (2/a)×(a^2 /(a^2 −1)) ∫  (1/(1+u^2 ))×((√(a^2 −1))/a)du  =(2/(√(a^2 −1)))∫ (du/(1+u^2 )) =(2/(√(a^2 −1))) arctan(((at−1)/(√(a^2 −1)))) =(2/(√(a^2 −1))) arctan(((atan((x/2))−1)/(√(a^2 −1)))) +c  rest to calculate f^′ (a) and lim_(a→1) f^′ (a) ...be continued...

letf(a)=dxasinxwehavef(a)=dx(asinx)2dx(asinx)2=f(a)anddx(1sinx)2=f(1)letexplicitef(a)changementtan(x2)=tgivef(a)=2dt(1+t2)(a2t1+t2)=2dta+at22t=2dtat22t+aΔ=1a2lettakea>1Δ<0f(a)=2adtt22ta+1=2adtt22ta+1a2+11a2=2adt(t1a)2+a21a2=t1a=a21au2a×a2a2111+u2×a21adu=2a21du1+u2=2a21arctan(at1a21)=2a21arctan(atan(x2)1a21)+cresttocalculatef(a)andlima1f(a)...becontinued...

Answered by Dwaipayan Shikari last updated on 17/Jul/20

∫(((1+sinx)^2 )/((1−sin^2 x)^2 ))dx=∫(sec^2 x+secxtanx)^2 dx=∫sec^2 x(secx+tanx)^2 dx  ∫secx(secx+tanx)secx(secx+tanx)dx  ∫secx  tdt                             {        take  secx+tanx=t  (dt/dx)=secx(secx+tanx)   ∫(t/(√(2t^2 −t^4 )))   dt                       {   ((1+sinx)/(cosx))=t⇒1+sin^2 x+2sinx=t^2 (1−sin^2 x)  ∫(1/(√(2−t^2 )))dt                              {        ⇒(1+t^2 )sin^2 x+2sinx+1−t^2 =0  ∫(((√2) cosθ)/(√(2−2sin^2 θ)))dθ                {t=(√2)sinθ    (√2)cosθ=(dt/dθ)  ∫dθ                                                 {       sinx=((−2±(√(4−4(1−t^4 ))))/2)=t^2 −1  =θ+C                                                         {      cosx=(√(1−(t^2 −1)^2 ))  =sin^(−1) (t/(√2))+C  =sin^(−1) (((secx+tanx)/(√2)))+Constant

(1+sinx)2(1sin2x)2dx=(sec2x+secxtanx)2dx=sec2x(secx+tanx)2dxsecx(secx+tanx)secx(secx+tanx)dxsecxtdt{takesecx+tanx=tdtdx=secx(secx+tanx)t2t2t4dt{1+sinxcosx=t1+sin2x+2sinx=t2(1sin2x)12t2dt{(1+t2)sin2x+2sinx+1t2=02cosθ22sin2θdθ{t=2sinθ2cosθ=dtdθdθ{sinx=2±44(1t4)2=t21=θ+C{cosx=1(t21)2=sin1t2+C=sin1(secx+tanx2)+Constant

Commented by mohammad17 last updated on 17/Jul/20

thank you sir

thankyousir

Commented by Dwaipayan Shikari last updated on 17/Jul/20

Kindly check it

Kindlycheckit

Commented by Dwaipayan Shikari last updated on 17/Jul/20

Commented by Dwaipayan Shikari last updated on 17/Jul/20

Alternate solution

Alternatesolution

Answered by mathmax by abdo last updated on 17/Jul/20

let try another way   I =∫  (dx/((1−sinx)^2 )) ⇒ I =∫ (dx/((1−cos((π/2)−x))^2 )) =∫ (dx/((2sin^2 ((π/4)−(x/2)))^4 ))  =(1/(16))∫  (dx/(sin^4 ((π/4)−(x/2)))) =_((π/4)−(x/2)=t)    (1/(16)) ∫  ((−2dt)/(sin^4 t)) =−(1/8)∫ (dt/(sin^4 t))  changement  tan((t/2))=u give ∫ (dt/(sin^4 t)) =∫  ((2du)/((1+u^2 )(((2u)/(1+u^2 )))^4 ))  =∫ ((2(1+u)^3 )/(16u^4 )) du =(1/8) ∫ ((u^3  +3u^2  +3u +1)/u^4 )du  =(1/8)∫ ((1/u) +(3/u^2 ) +(3/u^3 ) +(1/u^4 ))du  =(1/8){ ln∣u∣−(3/u) +3(−(1/(2u^2 ))) −(1/(3u^3 ))} +C  ⇒ I =−(1/(64)){ ln∣tan((t/2))∣−(3/(tan((t/2)))) −(3/(2tan^2 ((t/2))))−(1/(3tan^3 ((t/2))))} +C  =−(1/(64)){ ln∣tan((π/8)−(x/4))∣−(3/(tan((π/8)−(x/4)))) −(3/(2tan^2 ((π/8)−(x/4))))−(1/(3tan^3 ((π/8)−(x/4))))} +C

lettryanotherwayI=dx(1sinx)2I=dx(1cos(π2x))2=dx(2sin2(π4x2))4=116dxsin4(π4x2)=π4x2=t1162dtsin4t=18dtsin4tchangementtan(t2)=ugivedtsin4t=2du(1+u2)(2u1+u2)4=2(1+u)316u4du=18u3+3u2+3u+1u4du=18(1u+3u2+3u3+1u4)du=18{lnu3u+3(12u2)13u3}+CI=164{lntan(t2)3tan(t2)32tan2(t2)13tan3(t2)}+C=164{lntan(π8x4)3tan(π8x4)32tan2(π8x4)13tan3(π8x4)}+C

Commented by mathmax by abdo last updated on 17/Jul/20

error of typo I =∫ (dx/((2sin^2 ((π/4)−(x/2)))^2 )) =...

erroroftypoI=dx(2sin2(π4x2))2=...

Commented by mathmax by abdo last updated on 17/Jul/20

sorry change 64 by 32...

sorrychange64by32...

Commented by mohammad17 last updated on 17/Jul/20

ok sir thank you

oksirthankyou

Answered by PRITHWISH SEN 2 last updated on 17/Jul/20

∫(dx/((1−((2tan (x/2))/(1+tan^2 (x/2))))^2 ))=∫((sec^2 (x/2))/((1−tan (x/2))^4 ))(1+tan^2 (x/2))dx  tan(x/2)=t⇒sec^2 (x/2)dx=2dt  =2∫(((1+t^2 )dt)/((1−t)^4 ))=∫((2dt)/((1−t)^2 ))−∫((4(1−t)dt)/((1−t)^4 ))+4∫(dt/((1−t)^4 ))  =(2/((1−t)))+(2/((1−t)^2 ))−(4/(3(1−t)^3 )) +C  = (2/((1−tan (x/2)))) +(2/((1−tan (x/2))^2 )) −(4/(3(1−tan (x/2))^3 )) +C  please check

dx(12tanx21+tan2x2)2=sec2x2(1tanx2)4(1+tan2x2)dxtanx2=tsec2x2dx=2dt=2(1+t2)dt(1t)4=2dt(1t)24(1t)dt(1t)4+4dt(1t)4=2(1t)+2(1t)243(1t)3+C=2(1tanx2)+2(1tanx2)243(1tanx2)3+Cpleasecheck

Commented by mohammad17 last updated on 17/Jul/20

than you sir

thanyousir

Answered by Ar Brandon last updated on 19/Jul/20

I=∫(dx/((1−sinx)^2 ))=∫(((1+sinx)^2 )/((1−sinx)^2 (1+sinx)^2 ))dx     =∫((1+2sinx+sin^2 x)/((1−sin^2 x)^2 ))dx=∫((cos^2 x+2sinx+2sin^2 x)/(cos^4 x))dx     =∫sec^2 xdx+2∫((sinx)/(cos^4 x))dx+2∫tan^2 xsec^2 xdx     =tanx+((2sec^3 x)/3)+((2tan^3 x)/3)+C

I=dx(1sinx)2=(1+sinx)2(1sinx)2(1+sinx)2dx=1+2sinx+sin2x(1sin2x)2dx=cos2x+2sinx+2sin2xcos4xdx=sec2xdx+2sinxcos4xdx+2tan2xsec2xdx=tanx+2sec3x3+2tan3x3+C

Answered by Her_Majesty last updated on 07/Aug/20

∫(dx/((1−sin x)^2 ))  simply Weyerstrass′ Substitution  t=tan (x/2)  leads to  2∫((t^2 +1)/((t−1)^4 ))dt=−((2(3t^2 −3t+2))/(3(t−1)^3 ))=...

dx(1sinx)2simplyWeyerstrassSubstitutiont=tanx2leadsto2t2+1(t1)4dt=2(3t23t+2)3(t1)3=...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com