All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 129855 by liberty last updated on 20/Jan/21
ϑ=∫dx(1+x)3
Answered by EDWIN88 last updated on 20/Jan/21
ϑ=∫dx(x)3(1+x−1/2)3=∫x−3/2(1+x−1/2)3dxletφ=1+x−1/2→dφ=−12x−3/2dxϑ=−2∫dφφ3=−2∫φ−3dφφ=1φ2+C=1(x+1x)2+Cφ=x(x+1)2+C
Answered by stelor last updated on 20/Jan/21
letu=xso,du=12xdx=du=12udxv=∫2udu(1+u)3whereu=xlett=1+uso,du=dtv=2∫(t−1)t3dtwheret=u−1=x−1v=2[∫(1t2−1t3)dt]=2(−1t+12t2+c)v=2(−1x−1+12(x−1)2+c)v=3−2x(x−1)2+c
Commented by bemath last updated on 20/Jan/21
t=1+ubutt=u−1;ambiguous
Terms of Service
Privacy Policy
Contact: info@tinkutara.com