Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64662 by aliesam last updated on 20/Jul/19

∫(dx/((x^8 +x^4 +1)^2 ))    ∫_(1/x) ^x ((ln(t))/(t^2 +1)) dt

dx(x8+x4+1)21xxln(t)t2+1dt

Commented by MJS last updated on 20/Jul/19

the 2^(nd)  one should be =0

the2ndoneshouldbe=0

Commented by aliesam last updated on 20/Jul/19

yes thats right

yesthatsright

Commented by mathmax by abdo last updated on 20/Jul/19

2) let  I =∫_(1/x) ^x  ((ln(t))/(1+t^2 ))dt  with x>0  changement t =(1/u) give  I =−∫_(1/x) ^x   ((−lnu)/(1+(1/u^2 )))(−(du/u^2 )) =−∫_(1/x) ^x   ((lnu)/(u^2 +1)) =−I ⇒2I=0 ⇒I =0  remark when x go to +∞  we get  ∫_0 ^(+∞)   ((lnt)/(t^2  +1)) dt =0

2)letI=1xxln(t)1+t2dtwithx>0changementt=1ugiveI=1xxlnu1+1u2(duu2)=1xxlnuu2+1=I2I=0I=0remarkwhenxgoto+weget0+lntt2+1dt=0

Answered by MJS last updated on 20/Jul/19

∫(dx/((x^8 +x^4 +1)^2 ))  Ostrogradski′s Method  ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx  Q_1 (x)=gcd (Q(x), Q′(x))  Q_2 (x)=((Q(x))/(Q_1 (x)))  P_1 (x), P_2 (x) can be found by comparing the  factors of ((P(x))/(Q(x)))=(((P_1 (x))/(Q_1 (x))))′+((P_2 (x))/(Q_2 (x)))  in our case  P(x)=1  Q(x)=(x^8 +x^4 +1)^2   Q_1 (x)=Q_2 (x)=x^8 +x^4 +1  P_1 (x)=(1/(12))(x−x^5 )  P_2 (x)=(1/(12))(11−3x^4 )  ∫(dx/((x^8 +x^4 +1)^2 ))=−((x^5 −x)/(12(x^8 +x^4 +1)))−(1/(12))∫((3x^4 −11)/(x^8 +x^4 +1))dx    ((3x^4 −11)/(x^8 +x^4 +1))=((3x^4 −11)/((x^2 −x+1)(x^2 +x+1)(x^2 −(√3)x+1)(x^2 +(√3)x+1)))=  =−((3x+11)/(4(x^2 −x+1)))+((3x−11)/(4(x^2 +x+1)))+((25x−11(√3))/(4(√3)(x^2 −(√3)x+1)))−((25x+11(√3))/(4(√3)(x^2 +(√3)x+1)))    now use this formula  ∫((ax+b)/(x^2 +cx+d))dx=(a/2)∫((2x+c)/(x^2 +cx+d))dx+((2b−ac)/2)∫(dx/(x^2 +cx+d))=  =(a/2)ln (x^2 +cx+d) −((ac−2b)/(√(4d−c^2 )))arctan ((2x+c)/(√(4d−c^2 )))

dx(x8+x4+1)2OstrogradskisMethodP(x)Q(x)dx=P1(x)Q1(x)+P2(x)Q2(x)dxQ1(x)=gcd(Q(x),Q(x))Q2(x)=Q(x)Q1(x)P1(x),P2(x)canbefoundbycomparingthefactorsofP(x)Q(x)=(P1(x)Q1(x))+P2(x)Q2(x)inourcaseP(x)=1Q(x)=(x8+x4+1)2Q1(x)=Q2(x)=x8+x4+1P1(x)=112(xx5)P2(x)=112(113x4)dx(x8+x4+1)2=x5x12(x8+x4+1)1123x411x8+x4+1dx3x411x8+x4+1=3x411(x2x+1)(x2+x+1)(x23x+1)(x2+3x+1)==3x+114(x2x+1)+3x114(x2+x+1)+25x11343(x23x+1)25x+11343(x2+3x+1)nowusethisformulaax+bx2+cx+ddx=a22x+cx2+cx+ddx+2bac2dxx2+cx+d==a2ln(x2+cx+d)ac2b4dc2arctan2x+c4dc2

Commented by aliesam last updated on 20/Jul/19

god bless uou sir

godblessuousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com