Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 151341 by peter frank last updated on 20/Aug/21

∫_α ^β (dx/(x(√((x−α)(β−x) ))))=(π/( (√(αβ))))  where α,β >0

αβdxx(xα)(βx)=παβwhereα,β>0

Answered by Kamel last updated on 20/Aug/21

  Ω(α,β)=∫_α ^β (dx/(x(√((x−α)(β−x))))),β>α>0.  (x−α)z=(√((x−α)(β−x)))  (x−α)z^2 =(β−x)⇒x=((β+αz^2 )/(1+z^2 )),dx=−2z(β−α)(dz/((1+z^2 )^2 ))  x−α=((β+αz^2 )/(1+z^2 ))−α=((β−α)/(1+z^2 ))  ∴ Ω(α,β)=2∫_0 ^(+∞) (dz/((β+αz^2 )))=(π/( (√(αβ))))

Ω(α,β)=αβdxx(xα)(βx),β>α>0.(xα)z=(xα)(βx)(xα)z2=(βx)x=β+αz21+z2,dx=2z(βα)dz(1+z2)2xα=β+αz21+z2α=βα1+z2Ω(α,β)=20+dz(β+αz2)=παβ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com