Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 164609 by SANOGO last updated on 19/Jan/22

en posant x=t−(1/t)  ∫^(+oo) _0 ((1+t^2 )/(1+t^4 ))dt

enposantx=t1t0+oo1+t21+t4dt

Answered by Mathspace last updated on 19/Jan/22

I=∫_0 ^∞  ((1+(1/t^2 ))/(t^2 +(1/t^2 ))) dt =∫_0 ^∞  ((1+(1/t^2 ))/((t−(1/t))^2 +2))dt  =_(t−(1/t)=x)  ∫_(−∞) ^(+∞ ) (dx/(x^2 +2))  =_(x=(√2)y)   ∫_(−∞) ^(+∞ ) (((√2)dy)/(2(1+y^2 )))  =((√2)/2)[arctan(y)]_(−∞) ^(+∞)   =((√2)/2)((π/2)+(π/2))=((π(√2))/2)

I=01+1t2t2+1t2dt=01+1t2(t1t)2+2dt=t1t=x+dxx2+2=x=2y+2dy2(1+y2)=22[arctan(y)]+=22(π2+π2)=π22

Commented by SANOGO last updated on 19/Jan/22

merci bien

mercibien

Terms of Service

Privacy Policy

Contact: info@tinkutara.com