All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 119831 by talminator2856791 last updated on 27/Oct/20
evaluate:I=∫1∞(1x)xdx
Commented by Dwaipayan Shikari last updated on 27/Oct/20
Generally∫01x−xdx=∫01e−xlogxdx=∫01∑∞n=0(−xlogx)nn!=∑∞n=0(−1)n1n!∫01xnlognxdxlogx=t⇒1x=dtdx=∑∞n=0(−1)n1n!∫∞0tne(n+1)tdt(n+1)t=−u⇒−(n+1)=dudt=∑∞n=0(−1)n1n!(n+1)∫0∞(−1)nun(n+1)n.e−udu=∑∞n=0(−1)2n1(n+1)!(n+1)nΓ(n+1)=∑∞n=0n!(1)n(n+1)!(n+1)n=∑∞n=01(n+1)(n+1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com