All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 174407 by infinityaction last updated on 31/Jul/22
evaluatelimx→−∞3sinx+2x+1sinx−x2+1
Answered by CElcedricjunior last updated on 31/Jul/22
limx→−∞3sinx+2x+1sinx−x2+1or∀x∈R−1⩽sinx⩽1⇔13⩽3sinx⩽3⇔13+2x+1⩽3sinx+2x+1⩽4+2x−1⩽sinx⩽1−1−x2+1⩽sinx−1+x2⩽1−1+x2⇔43+2x−1−1+x2⩽3sinx+2x+1sinx−1+x2⩽4+2x1−1+x2limx→−∞43+2x−1−1+x2=limx→−∞43+2x−1−∣x∣1+1x2=limx→−∞x(43x+2)x(−1x+1+1x2)casqd:{x−>−∞∣x∣=−x=2limx→−∞4+2x1−1+x2=2enprocedantdelamememaniered′ou`limx→−∞3sinx+2x+1sinx−1+x2=2D′apres`letheor´eme`desgendarmes.........lecel´ebre`cedricjunior...........
Commented by infinityaction last updated on 01/Aug/22
thanks
Terms of Service
Privacy Policy
Contact: info@tinkutara.com