All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 144980 by henderson last updated on 01/Jul/21
exercise―Letaandbbenaturalintegerssuchthat0<a<b.1.Showthatifadividesb,thenforanynaturelnumbern,na−1dividesnb−1.2.Foranynon−zeronaturelnumbern,provethattheremainderoftheeuclideandivisionofnb−1byna−1isnr−1whereristheremainderoftheeuclideandivisionofbbya.3.Foranynon−zeronaturelnumbern,showthatgcd(nb−1,na−1)=nd−1whered=gcd(b,c).byprofessorhenderson―.
Answered by mindispower last updated on 01/Jul/21
a∣b⇒na−1∣nb−1Xcn−1=(Xc−1)(1+Xc+X2c.....+X.c(n−1))a∣b⇒b=manb−1=nma−1=(na−1).(1+na+........+na(m−1)).using(1)⇒na−1∣nb−1b=ma+rnb−1=nma+r−1+nr−nrnb−1=nr(nma−1)+nr−1na−1∣nma−1.....byusinga∣ma⇒nb−1≡(nr−1)mod(na−1)since0⩽nr−1<min(na−1,nb−1)nr−1isremainderofdivisionnb−1byna−1letd=gcd(a,b)⇒nd−1∣na−1,nb−1withe1supoosem∣(na−1,nb−1)b>ab=am+r⇒m∣na−1,nr−1byreccuraionofeuclid⇒m∣nd−1⇒nd−1>m⇒∀M∈NM∣(na−1,nb−1)⇒M∣nd−1nd−1=gcd(na−1,nb−1)
Commented by greg_ed last updated on 01/Jul/21
sir,thislinena−1∣nma−1.....byusinga∣maisn′tna−1∣nma−1.....byusinga∣ma?
Commented by mindispower last updated on 03/Jul/21
yessir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com