Question and Answers Forum

All Questions      Topic List

Operation Research Questions

Previous in All Question      Next in All Question      

Previous in Operation Research      Next in Operation Research      

Question Number 2032 by 123456 last updated on 31/Oct/15

f:[0,+1]→R  η(f):=∫_0 ^1 f^2 dx  and if ∀x∈[0,1],f∈[m,M] for some (m,M)∈R^2   f↑:=max(f)−f  f↓:=f−min(f)  μ(f):=∫_0 ^1 f↓f↑dx  then  f=e^x , η(f)=^? μ(f)  f=x,η(f)=^? μ(f)  ∃f,η(f)=0???  ∃f,μ(f)=0???  μ(f)=0, does η(f)=0???  η(f)=0, does μ(f)=0???

f:[0,+1]Rη(f):=10f2dxandifx[0,1],f[m,M]forsome(m,M)R2f↑:=max(f)ff↓:=fmin(f)μ(f):=10ffdxthenf=ex,η(f)=?μ(f)f=x,η(f)=?μ(f)f,η(f)=0???f,μ(f)=0???μ(f)=0,doesη(f)=0???η(f)=0,doesμ(f)=0???

Commented by Yozzi last updated on 31/Oct/15

An attempt  max(f)=M,min(f)=m  ∴ f↑=M−f , f↓=f−m  μ(f)=∫_0 ^1 f↑f↓dx=∫_0 ^1 (M−f)(f−m)dx  μ(f)=∫_0 ^1 (M+m)fdx−∫_0 ^1 f^2 dx−Mm∫_0 ^1 dx  μ(f)=(M+m)∫_0 ^1 fdx−η(f)−Mm  μ(f)+η(f)=(M+m)∫_0 ^1 fdx−Mm  f(x)=e^x   η(e^x )=∫_0 ^1 e^(2x) dx=(1/2)(e^2 −1)=(1/2)(e+1)(e−1)  ∀x∈[0,1],e^x ∈[1,e]⇒m=1,M=e  ∴μ(e^x )=(1+e)∫_0 ^1 e^x dx−(1/2)(e+1)(e−1)−e  μ(e^x )=(1+e)(e−1)−0.5(e+1)(e−1)−e  μ(e^x )=0.5(e+1)(e−1)−e≠0.5(e−1)(e+1)  μ(e^x )≠η(e^x )    f(x)=x  η(x)=∫_0 ^1 x^2 dx=(1/3)  ∀x∈[0,1], f∈[0,1]⇒m=0,M=1.  ∴μ(x)=(0+1)∫_0 ^1 xdx−(1/3)−0  μ(x)=(1/2)−(1/3)=(1/6)≠(1/3)  ∴μ(x)≠η(x)    For f(x)≠0 ∀x∈[0,1], if η(f)=0⇒f^2  is odd for x∈[0,1]  Thus, if φ(x)=f^2 (x)⇒φ(−x)=−φ(x)=−f^2 (x)  But,φ(−x)=f^2 (−x) and, ∀f(x)∈R, f^2 (−x)≥0.  ⇒φ(−x)≥0⇒φ(−x)≮0 as implied by  φ(−x)=−f^2 (x).  ∴f^2  is not odd for any  x∈R.⇒∄f∈R∣η(f)=0 if f(x)≠0.  If we only consider the statement  η(f)=0, we can have f(x)=0 being a  function.    If μ(f)=0⇒η(f)=0, 0+0=(M+m)∫_0 ^1 fdx−Mm  ⇒∫_0 ^1 f(x)dx=((Mm)/(m+M))=((max(f)min(f))/(max(f)+min(f)))  Is there a function f∈[m,M] such that  ∫_0 ^1 f(x)dx=((mM)/(m+M))?  By the fundamental theorem of calculus    F(1)−F(0)=((max(F^′ (x))min(F^′ (x)))/(max(F^′ (x))+min(F^′ (x))))  If η(f)=0⇒μ(f)=(m+M)∫_0 ^1 fdx−Mm    ∴ ∫_0 ^1 f^2 dx=(m+M)∫_0 ^1 fdx−mM  ∫_0 ^1 (f^2 (x)−(m+M)f(x))dx=−mM  ∫_0 ^1 f(x)(f(x)−m+M)dx=−mM  The simpler equation to the above one  is ∫_0 ^1 (M−f(x))(f(x)−m)dx=0.  ∴ Let φ(x)=(M−f(x))(f(x)−m)  where φ(x) is odd for x∈[0,1].

Anattemptmax(f)=M,min(f)=mf↑=Mf,f↓=fmμ(f)=10ffdx=01(Mf)(fm)dxμ(f)=01(M+m)fdx01f2dxMm01dxμ(f)=(M+m)01fdxη(f)Mmμ(f)+η(f)=(M+m)01fdxMmf(x)=exη(ex)=01e2xdx=12(e21)=12(e+1)(e1)x[0,1],ex[1,e]m=1,M=eμ(ex)=(1+e)01exdx12(e+1)(e1)eμ(ex)=(1+e)(e1)0.5(e+1)(e1)eμ(ex)=0.5(e+1)(e1)e0.5(e1)(e+1)μ(ex)η(ex)f(x)=xη(x)=01x2dx=13x[0,1],f[0,1]m=0,M=1.μ(x)=(0+1)01xdx130μ(x)=1213=1613μ(x)η(x)Forf(x)0x[0,1],ifη(f)=0f2isoddforx[0,1]Thus,ifϕ(x)=f2(x)ϕ(x)=ϕ(x)=f2(x)But,ϕ(x)=f2(x)and,f(x)R,f2(x)0.ϕ(x)0ϕ(x)0asimpliedbyϕ(x)=f2(x).f2isnotoddforanyxR.fRη(f)=0iff(x)0.Ifweonlyconsiderthestatementη(f)=0,wecanhavef(x)=0beingafunction.Ifμ(f)=0η(f)=0,0+0=(M+m)01fdxMm01f(x)dx=Mmm+M=max(f)min(f)max(f)+min(f)Isthereafunctionf[m,M]suchthat01f(x)dx=mMm+M?BythefundamentaltheoremofcalculusF(1)F(0)=max(F(x))min(F(x))max(F(x))+min(F(x))Ifη(f)=0μ(f)=(m+M)01fdxMm01f2dx=(m+M)01fdxmM01(f2(x)(m+M)f(x))dx=mM01f(x)(f(x)m+M)dx=mMThesimplerequationtotheaboveoneis01(Mf(x))(f(x)m)dx=0.Letϕ(x)=(Mf(x))(f(x)m)whereϕ(x)isoddforx[0,1].

Terms of Service

Privacy Policy

Contact: info@tinkutara.com