All Questions Topic List
Operation Research Questions
Previous in All Question Next in All Question
Previous in Operation Research Next in Operation Research
Question Number 2032 by 123456 last updated on 31/Oct/15
f:[0,+1]→Rη(f):=∫10f2dxandif∀x∈[0,1],f∈[m,M]forsome(m,M)∈R2f↑:=max(f)−ff↓:=f−min(f)μ(f):=∫10f↓f↑dxthenf=ex,η(f)=?μ(f)f=x,η(f)=?μ(f)∃f,η(f)=0???∃f,μ(f)=0???μ(f)=0,doesη(f)=0???η(f)=0,doesμ(f)=0???
Commented by Yozzi last updated on 31/Oct/15
Anattemptmax(f)=M,min(f)=m∴f↑=M−f,f↓=f−mμ(f)=∫10f↑f↓dx=∫01(M−f)(f−m)dxμ(f)=∫01(M+m)fdx−∫01f2dx−Mm∫01dxμ(f)=(M+m)∫01fdx−η(f)−Mmμ(f)+η(f)=(M+m)∫01fdx−Mmf(x)=exη(ex)=∫01e2xdx=12(e2−1)=12(e+1)(e−1)∀x∈[0,1],ex∈[1,e]⇒m=1,M=e∴μ(ex)=(1+e)∫01exdx−12(e+1)(e−1)−eμ(ex)=(1+e)(e−1)−0.5(e+1)(e−1)−eμ(ex)=0.5(e+1)(e−1)−e≠0.5(e−1)(e+1)μ(ex)≠η(ex)f(x)=xη(x)=∫01x2dx=13∀x∈[0,1],f∈[0,1]⇒m=0,M=1.∴μ(x)=(0+1)∫01xdx−13−0μ(x)=12−13=16≠13∴μ(x)≠η(x)Forf(x)≠0∀x∈[0,1],ifη(f)=0⇒f2isoddforx∈[0,1]Thus,ifϕ(x)=f2(x)⇒ϕ(−x)=−ϕ(x)=−f2(x)But,ϕ(−x)=f2(−x)and,∀f(x)∈R,f2(−x)⩾0.⇒ϕ(−x)⩾0⇒ϕ(−x)≮0asimpliedbyϕ(−x)=−f2(x).∴f2isnotoddforanyx∈R.⇒∄f∈R∣η(f)=0iff(x)≠0.Ifweonlyconsiderthestatementη(f)=0,wecanhavef(x)=0beingafunction.Ifμ(f)=0⇒η(f)=0,0+0=(M+m)∫01fdx−Mm⇒∫01f(x)dx=Mmm+M=max(f)min(f)max(f)+min(f)Isthereafunctionf∈[m,M]suchthat∫01f(x)dx=mMm+M?BythefundamentaltheoremofcalculusF(1)−F(0)=max(F′(x))min(F′(x))max(F′(x))+min(F′(x))Ifη(f)=0⇒μ(f)=(m+M)∫01fdx−Mm∴∫01f2dx=(m+M)∫01fdx−mM∫01(f2(x)−(m+M)f(x))dx=−mM∫01f(x)(f(x)−m+M)dx=−mMThesimplerequationtotheaboveoneis∫01(M−f(x))(f(x)−m)dx=0.∴Letϕ(x)=(M−f(x))(f(x)−m)whereϕ(x)isoddforx∈[0,1].
Terms of Service
Privacy Policy
Contact: info@tinkutara.com