Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38123 by maxmathsup by imad last updated on 22/Jun/18

f is a function positive  and C^1     1) find ∫    (f^′ /(2(√f)(√(1+f))))dx  2)let  A_n = ∫_0 ^1     (x^(n/2) /(x(√(1+x^n ))))  calculate A_n   and lim_(n→+∞)  A_n

fisafunctionpositiveandC11)findf2f1+fdx2)letAn=01xn2x1+xncalculateAnandlimn+An

Commented by prof Abdo imad last updated on 22/Jun/18

changement (√f)=u (u function!) give  ∫  (f^′ /(2(√f)(√(1+f))))dx=∫ ((2u^′ u)/(2u(√(1+u^2 ))))dx  =∫    (u^′ /(√(1+u^2 )))dx=ln(u +(√(1+u^2 ))) +c  =ln((√f) +(√(1+f))) +c    2) we have A_n  = ∫_0 ^1     (x^(n/2) /(x(√(1+x^n ))))dx   changement x^n =t give x=t^(1/n)   and  A_n  = ∫_0 ^1    (t^(1/2) /(t^((1/n) ) (√(1+t)))) (1/n)t^((1/n) −1) dt  =(1/n) ∫_0 ^1     (dt/((√t)(√(1+t)))) =_((√t)=u)   (1/n)∫_0 ^1     ((2udu)/(u(√(1+u^2 ))))  = (2/n)[ln(u +(√(1+u^2 )))]_0 ^1   =(2/n){ ln(1+(√2))}

changementf=u(ufunction!)givef2f1+fdx=2uu2u1+u2dx=u1+u2dx=ln(u+1+u2)+c=ln(f+1+f)+c2)wehaveAn=01xn2x1+xndxchangementxn=tgivex=t1nandAn=01t12t1n1+t1nt1n1dt=1n01dtt1+t=t=u1n012uduu1+u2=2n[ln(u+1+u2)]01=2n{ln(1+2)}

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18

1)∫((df/dx)/(2(√f) (√(1+f))))dx  ∫(df/(2(√f) (√(1+f))))  t^2 =1+f  ∫((2tdt)/(2(√(t^2 −1)) ×t))  ∫(dt/(√(t^2 −1)))  use formula ∫(dx/(√(x^2 −a^2 )))  ln(t+(√(t^2 −1)) )+c  ln((√(1+f)) +(√f) )+c

1)dfdx2f1+fdxdf2f1+ft2=1+f2tdt2t21×tdtt21useformuladxx2a2ln(t+t21)+cln(1+f+f)+c

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18

x^n +1=t^2     2tdt =nx^(n−1) dx    2tdt=nx^n (dx/x)  ((2tdt)/(n(t^2 −1)))=(dx/x)  ∫_1 ^((√2) ) ((2tdt)/(n(t^2 −1)))×(((√(t^2 −1)) )/t)  =(2/n)∫_1 ^(√2) (√(t^2 −1)) dt  (1/n)∣(t/2)(√(t^2 −1)) −(1/2)ln(t+(√(t^2 −1))) ∣_1 ^((√2) )   (1/n){(((√2) )/2)−(1/2)ln((√2) +1)}  =(1/n){(((√2) )/2)−(1/2)ln((√2) +1)}  when n→∞  value of intregation is 0  use formula∫(√(x^2 −a^2  )) dx

xn+1=t22tdt=nxn1dx2tdt=nxndxx2tdtn(t21)=dxx122tdtn(t21)×t21t=2n12t21dt1nt2t2112ln(t+t21)121n{2212ln(2+1)}=1n{2212ln(2+1)}whennvalueofintregationis0useformulax2a2dx

Commented by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com