Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65290 by mathmax by abdo last updated on 27/Jul/19

f(x) =∫_0 ^1   (dt/(x+e^t ))   with  0≤x≤1  1) find aexplicit form of f(x)  2) calculate ∫_0 ^1   (dt/(2+e^t ))  3) find g(x) =∫_0 ^1  (dt/((x+e^t )^2 ))  4) calculate ∫_0 ^1   (dt/((1+e^t )^2 ))  5) give f^((n)) (x) at form of integrals  6) developp f at integr serie.

f(x)=01dtx+etwith0x11)findaexplicitformoff(x)2)calculate01dt2+et3)findg(x)=01dt(x+et)24)calculate01dt(1+et)25)givef(n)(x)atformofintegrals6)developpfatintegrserie.

Commented by mathmax by abdo last updated on 28/Jul/19

1) f(x) =∫_0 ^1   (dt/(x+e^t )) =∫_0 ^1   (e^(−t) /(1+xe^(−t) ))dt  =−(1/x)∫_0 ^1  ((−xe^(−t) )/(1+xe^(−t) ))dt  =−(1/x)[ln(1+xe^(−t) )]_(t=0) ^1  =−(1/x){ln(1+xe^(−1) )−ln(1+x)} ⇒  f(x) =((ln(1+x))/x) −((ln(1+xe^(−1) ))/x)   if   x≠0  2)∫_0 ^1   (dt/(2+e^t )) =f(2) =((ln(3))/2) −((ln(1+2e^(−1) ))/2)  3)we have f^′ (x) =−∫_0 ^1   (dt/((x+e^t )^2 )) =−g(x) ⇒g(x)=−f^′ (x)  f^′ (x) =−(1/x^2 )ln(1+x)+(1/(x(1+x))) +(1/x^2 )ln(1+xe^(−1) )−(1/x)(e^(−1) /(1+xe^(−1) )) ⇒  g(x) =(1/x^2 )ln(1+x)−(1/(x(1+x)))−(1/x^2 )ln(1+xe^(−1) )+(e^(−1) /(x(1+xe^(−1) )))  4)∫_0 ^1    (dt/((1+e^t )^2 )) =g(1) =ln(2)−(1/2) −ln(1+e^(−1) ) +(e^(−1) /(1+e^(−1) ))

1)f(x)=01dtx+et=01et1+xetdt=1x01xet1+xetdt=1x[ln(1+xet)]t=01=1x{ln(1+xe1)ln(1+x)}f(x)=ln(1+x)xln(1+xe1)xifx02)01dt2+et=f(2)=ln(3)2ln(1+2e1)23)wehavef(x)=01dt(x+et)2=g(x)g(x)=f(x)f(x)=1x2ln(1+x)+1x(1+x)+1x2ln(1+xe1)1xe11+xe1g(x)=1x2ln(1+x)1x(1+x)1x2ln(1+xe1)+e1x(1+xe1)4)01dt(1+et)2=g(1)=ln(2)12ln(1+e1)+e11+e1

Commented by mathmax by abdo last updated on 28/Jul/19

5) we have f(x) =∫_0 ^1 (dt/(x+e^t )) ⇒f^((n)) (x) =∫_0 ^1  (((−1)^n n!)/((x+e^t )^(n+1) ))dt  =(−1)^n n! ∫_0 ^1    (dt/((x+e^t )^(n+1) ))  6) f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n     but f^((n)) (0) =(−1)^n n! ∫_0 ^1   (dt/e^((n+1)t) )  =(−1)^n n! ∫_0 ^1  e^(−(n+1)t)  dt =(−1)^n n! [−(1/(n+1))e^(−(n+1)t) ]_0 ^1   =−(((−1)^n n!)/(n+1)){  e^(−(n+1)) −1} ⇒f(x) =Σ_(n=0) ^∞  (((−1)^(n+1) )/(n+1)){e^(−(n+1)) −1}  ⇒f(x) =Σ_(n=0) ^∞   (((−1)^n )/(n+1)){1−e^(−(n+1)) } .

5)wehavef(x)=01dtx+etf(n)(x)=01(1)nn!(x+et)n+1dt=(1)nn!01dt(x+et)n+16)f(x)=n=0f(n)(0)n!xnbutf(n)(0)=(1)nn!01dte(n+1)t=(1)nn!01e(n+1)tdt=(1)nn![1n+1e(n+1)t]01=(1)nn!n+1{e(n+1)1}f(x)=n=0(1)n+1n+1{e(n+1)1}f(x)=n=0(1)nn+1{1e(n+1)}.

Commented by mathmax by abdo last updated on 28/Jul/19

f(x) =Σ_(n=0) ^∞  (((−1)^n )/(n+1)){1−e^(−(n+1)) } x^n

f(x)=n=0(1)nn+1{1e(n+1)}xn

Answered by Eminem last updated on 28/Jul/19

f(x)=∫_0 ^1 (e^(−t) /(xe^(−t) +1))dt=−(1/x)∫_0 ^1 ((−xe^(−t) )/(1+xe^(−t) ))dt     ∀x∈IR^∗   f(x)=−(1/x){ln(1+xe^(−1) )−ln(1+x) }=(1/x)ln(((1+x)/(1+xe^(−1) )))  2⟩f(2)=(1/2)ln((3/(1+2e^(−1) )))  3)find  g(x}=∫_0 ^1  (dt/((x+e^t )^2 ))  ∀x∈IR^∗  f(x)=(1/x)ln(((1+x)/(1+xe^(−1) )))  f^′ (x)=∫_0 ^1 (d/dx)((1/(x+e^t )))dt=∫_0 ^1 ((−1)/((x+e^t )^2 ))dt=−g(x)==>  g(x)=−f^′ (x)=−(d/dx){(1/x)ln(((1+x)/(1+xe^(−1) )))}  =−{((−1)/x^2 )ln(((1+x)/(1+xe^(−1) )))+(1/x)×(((1+xe^(−1) −e^(−1) (1+x))/(((1+xe^(−1) )^2 )/(((1+x))/((1+xe^(−1) ))))))}  =(1/x^2 )ln(((1+x)/(1+xe^(−1) )))−(1/x)×(((1−e^(−1) ))/((1+x)(1+xe^(−1) )))=g(x)  ∫_0 ^1 (dt/((1+e^t )^2 ))=g(1)=ln((2/(1+e^(−1) )))−(((1−e^(−1) ))/((1+e^(−1) )(2)))  f^n (x)=∫_0 ^1 (((−1)^n n!)/((x+e^t )^(n+1) ))  f(x)=(1/x){ln(1+x)−ln(1+xe^(−1) )}  =(1/x){Σ_(k=0) ((−1)^k (x^(k+1) /(k+1))−(−1)^k (((e^(−1) x)^(k+1) )/(k+1)))  =Σ_(k=0) (−1)^k (1−e^(−(k+1)) )(x^k /(k+1))

f(x)=01etxet+1dt=1x01xet1+xetdtxIRf(x)=1x{ln(1+xe1)ln(1+x)}=1xln(1+x1+xe1)2f(2)=12ln(31+2e1)3)findg(x}=01dt(x+et)2xIRf(x)=1xln(1+x1+xe1)f(x)=01ddx(1x+et)dt=011(x+et)2dt=g(x)==>g(x)=f(x)=ddx{1xln(1+x1+xe1)}={1x2ln(1+x1+xe1)+1x×(1+xe1e1(1+x)(1+xe1)2(1+x)(1+xe1))}=1x2ln(1+x1+xe1)1x×(1e1)(1+x)(1+xe1)=g(x)01dt(1+et)2=g(1)=ln(21+e1)(1e1)(1+e1)(2)fn(x)=01(1)nn!(x+et)n+1f(x)=1x{ln(1+x)ln(1+xe1)}=1x{k=0((1)kxk+1k+1(1)k(e1x)k+1k+1)=k=0(1)k(1e(k+1))xkk+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com