Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87052 by lémùst last updated on 02/Apr/20

f(x)=∫_0 ^(π/2) ((sin^2 (t))/(1+xsin^2 (t)))dt

f(x)=0π/2sin2(t)1+xsin2(t)dt

Commented by mathmax by abdo last updated on 02/Apr/20

f(x)=∫_0 ^(π/2)  ((sin^2 t)/(1+x sin^2 t))dt=(1/x)∫_0 ^(π/2)  ((xsin^2 t +1−1)/(1+xsin^2 t))dt  =(π/(2x))−(1/x) ∫_0 ^(π/(2 ))  (dt/(1+xsin^2 t)) [we have  ∫_0 ^(π/2)  (dt/(1+xsin^2 t)) =∫_0 ^(π/2)  (dt/(1+x×((1−cos(2t))/2)))  =_(2x=u)   ∫_0 ^π      (du/(2(1+x×((1−cos(2u))/2)))) = ∫_0 ^π   (du/(2+x−xcosu))  =_(tan((u/2))=z)   ∫_0 ^∞    ((2dz)/((1+z^2 )(2+x −x((1−z^2 )/(1+z^2 ))))) =∫_0 ^∞   ((2dz)/(2+x +(2+x)z^2 −x+xz^2 ))  =∫_0 ^∞   ((2dz)/(2+(2+2x)z^2 )) =∫_0 ^∞   (dz/(1+(1+x)z^2 ))   case 1   1+x>0  we do changement u=(√(1+x))z ⇒  ∫_0 ^∞   (dz/(1+(1+x)z^2 )) =∫_0 ^∞   (du/((√(1+x))(1+u^2 ))) =(1/(√(1+x))) ×(π/2) ⇒  f(x)=(π/(2x))−(π/(2x(√(1+x))))  (x>−1 and x≠0)  case 2  1+x<0 ⇒∫_0 ^∞   (dz/(1+(1+x)z^2 )) =∫_0 ^∞   (dz/(1−(−(1+x))z^2 ))  =∫_0 ^∞   (dz/((1−(√(−1−x))z)(1+(√(−1−x))z)))  =(1/2)∫_0 ^∞   ((1/(1−(√(−1−x))z))+(1/(1+(√(−1−x))z)))  =(1/2)∫_0 ^∞ ((1/(−αz +1)) +(1/(αz +1)))dz   (α=(√(−1−x)))  =(1/2)[(1/α)ln∣αz +1∣−(1/α)ln∣αz−1∣]_0 ^(+∞)   (1/(2α))[ln∣((αz +1)/(αz−1))∣]_0 ^(+∞)  =0  so  f(x)=(π/(2x))−(π/(2x(√(1+x)))) if x>−1 and x≠−1  f(x)=0 if x<−1

f(x)=0π2sin2t1+xsin2tdt=1x0π2xsin2t+111+xsin2tdt=π2x1x0π2dt1+xsin2t[wehave0π2dt1+xsin2t=0π2dt1+x×1cos(2t)2=2x=u0πdu2(1+x×1cos(2u)2)=0πdu2+xxcosu=tan(u2)=z02dz(1+z2)(2+xx1z21+z2)=02dz2+x+(2+x)z2x+xz2=02dz2+(2+2x)z2=0dz1+(1+x)z2case11+x>0wedochangementu=1+xz0dz1+(1+x)z2=0du1+x(1+u2)=11+x×π2f(x)=π2xπ2x1+x(x>1andx0)case21+x<00dz1+(1+x)z2=0dz1((1+x))z2=0dz(11xz)(1+1xz)=120(111xz+11+1xz)=120(1αz+1+1αz+1)dz(α=1x)=12[1αlnαz+11αlnαz1]0+12α[lnαz+1αz1]0+=0sof(x)=π2xπ2x1+xifx>1andx1f(x)=0ifx<1

Commented by lémùst last updated on 02/Apr/20

merci beaucoup   mais je pense que f(x)=(π/(2x)) si x<−1

mercibeaucoupmaisjepensequef(x)=π2xsix<1

Commented by mathmax by abdo last updated on 02/Apr/20

oui  tu a raison j ai oublie (π/(2x)) merci .

ouituaraisonjaioublieπ2xmerci.

Commented by Ar Brandon last updated on 03/Apr/20

genial!!

genial!!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com