All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 66104 by Rio Michael last updated on 09/Aug/19
f(x)=2x3−x−4showthattheequationf(x)=0hasrootbetween1and2showthattheequationf(x)=0canbewrittenasx=(2x+12)usetheiterationxn+1=(2xn+12),withx0=1.385tofindto3decimalplacesthevalueofx1.
Commented by mathmax by abdo last updated on 09/Aug/19
wehavef(x)=2x3−x−4⇒f′(x)=6x2−1=(6x−1)(6x+1)f′(x)=0⇔x=+−16variationoff(x)x−∞−1616+∞f′(x)+−+f(x)−∞incr.f(−16)decrf(16)incr+∞fisincreasingon[16,+∞[f(1)=2−1−4=−5f(2)=16−2−4=10⇒f(1)f(2)<0⇒∃α∈]1,2[/f(α)=0x=2x+12andx>0⇒x2=4+x2x⇒2x3=4+x⇒2x3−x−4=0⇒f(x)=0sof(x)=0andx>0⇔x=2x+12ifweconsidertheiterationxn+1=2xn+12wegetx1=2x0+12=4+x02x0=4+1,3852×1,385resttofinishthecalculus....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com