Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 191151 by TUN last updated on 19/Apr/23

f(x)+f(1−x)=x^2   =>f(x)=¿

f(x)+f(1x)=x2=>f(x)=¿

Answered by Rasheed.Sindhi last updated on 19/Apr/23

f(x)+f(1−x)=x^2 .......(i)  Replacing x by 1−x:  f(1−x)+f( 1−(1−x) )=(1−x)^2   f(1−x)+f( x )=(1−x)^2 ......(ii)  (i)   &   (ii): x^2 =(1−x)^2   x^2 =1−2x+x^2   1−2x=0⇒x=(1/2)  x is constant  f((1/2))+f(1−(1/2))=((1/2))^2 =(1/4)  2f((1/2))=(1/4)⇒ f((1/2))=(1/8)

f(x)+f(1x)=x2.......(i)Replacingxby1x:f(1x)+f(1(1x))=(1x)2f(1x)+f(x)=(1x)2......(ii)(i)&(ii):x2=(1x)2x2=12x+x212x=0x=12xisconstantf(12)+f(112)=(12)2=142f(12)=14f(12)=18

Commented by mr W last updated on 19/Apr/23

but in f(x)+f(1−x)=x^2  x is not a  constant but a variable (∈R).  so i think the answer is that  f(x) satisfying f(x)+f(1−x)=x^2    doesn′t exist.

butinf(x)+f(1x)=x2xisnotaconstantbutavariable(R).soithinktheansweristhatf(x)satisfyingf(x)+f(1x)=x2doesntexist.

Commented by Rasheed.Sindhi last updated on 19/Apr/23

Very right sir! Thanks!

Veryrightsir!Thanks!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com