Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67234 by prof Abdo imad last updated on 24/Aug/19

factorise p(x)=1+x+x^2  +x^3  +x^5   inside C[x] and R[x]  calculate p(e^(i(π/5)) ) and p(cos((π/5)))

factorisep(x)=1+x+x2+x3+x5insideC[x]andR[x]calculatep(eiπ5)andp(cos(π5))

Commented by mathmax by abdo last updated on 24/Aug/19

sorry p(x)=1+x+x^2  +x^3  +x^4

sorryp(x)=1+x+x2+x3+x4

Commented by mathmax by abdo last updated on 25/Aug/19

1)p(x)=0 ⇔ 1+x+x^2  +x^3  +x^4 =0  ⇔1−x^5 =0   and x ≠1   x^5 =1  let x =re^(iθ)       (e)⇒r^5 e^(i5θ) =e^(i(2kπ))  ⇒r=1 and 5θ=2kπ ⇒  θ_k =((2kπ)/5)  so the roots are z_k =e^(i(((2kπ)/5)))   with k∈[[1,4]]  p(x)=Π_(k=1) ^4 (x−z_k )=Π_(k=1) ^4 (x−e^(i((2kπ)/5)) ) =(x−e^(i((2π)/5)) )(x−e^(i((4π)/5)) )(x−e^(i((6π)/5)) )(x−e^(i((8π)/5)) )  but  e^(i((8π)/5))  =e^(i(2π−((2π)/5)))  =e^(−((i2π)/5))    and e^(i((6π)/5))  =e^(−i((4π)/5))  ⇒  p(x) =(x−e^(i((2π)/5)) )(x−e^(−i((2π)/5)) )(x−e^(i((4π)/5)) )(x−e^(−i((4π)/5)) )  =(x^2 −2Re(e^(i((2π)/5)) )x+1)(x^2 −2Re(e^(i((4π)/5)) )x+1)   isthe decomposition  inside C[x]  we have cos((π/5)) =((1+(√5))/4) ⇒cos(((2π)/5))=2cos^2 ((π/5))−1  =2(((1+(√5))/4))^2 −1 =(1/8)(6+2(√5))−1 =((6+2(√5)−8)/8) =((−2+2(√5))/8) =(((√5)−1)/4)  cos(((4π)/5)) =cos(π−(π/5)) =−cos((π/5)) ⇒  p(x) =(x^2 −(((√5)−1)/2)x +1)(x^2 +(((√5)−1)/2)x+1)

1)p(x)=01+x+x2+x3+x4=01x5=0andx1x5=1letx=reiθ(e)r5ei5θ=ei(2kπ)r=1and5θ=2kπθk=2kπ5sotherootsarezk=ei(2kπ5)withk[[1,4]]p(x)=k=14(xzk)=k=14(xei2kπ5)=(xei2π5)(xei4π5)(xei6π5)(xei8π5)butei8π5=ei(2π2π5)=ei2π5andei6π5=ei4π5p(x)=(xei2π5)(xei2π5)(xei4π5)(xei4π5)=(x22Re(ei2π5)x+1)(x22Re(ei4π5)x+1)isthedecompositioninsideC[x]wehavecos(π5)=1+54cos(2π5)=2cos2(π5)1=2(1+54)21=18(6+25)1=6+2588=2+258=514cos(4π5)=cos(ππ5)=cos(π5)p(x)=(x2512x+1)(x2+512x+1)

Commented by mathmax by abdo last updated on 25/Aug/19

we have for x≠1   p(x) =((1−x^5 )/(1−x)) ⇒ p(e^(i(π/5)) ) =((1−(e^((iπ)/5) )^5 )/(1−e^(i(π/5)) ))  =(2/(1−e^((iπ)/5) ))  also we have p(cos((π/5))) =((1−cos^5 ((π/5)))/(1−cos((π/5))))  =((1−(((1+(√5))/4))^5 )/(1−((1+(√5))/4)))

wehaveforx1p(x)=1x51xp(eiπ5)=1(eiπ5)51eiπ5=21eiπ5alsowehavep(cos(π5))=1cos5(π5)1cos(π5)=1(1+54)511+54

Answered by mind is power last updated on 24/Aug/19

p(x)=1+x+x^2 +x^3 +x^4 ?

p(x)=1+x+x2+x3+x4?

Answered by MJS last updated on 25/Aug/19

(x^4 +x^3 +x^2 +x+1)(x−1)=x^5 −1  x^5 =1  x_0 =1  x_1 =−((1−(√5))/4)+((√(10+2(√5)))/4)i  x_2 =−((1+(√5))/4)+((√(10−2(√5)))/4)i  x_3 =−((1+(√5))/4)−((√(10−2(√5)))/4)i  x_4 =−((1−(√5))/4)−((√(10+2(√5)))/4)i  ⇒  x^4 +x^3 +x^2 +x+1=  =(x^2 +((1−(√5))/2)x+1)(x^2 +((1+(√5))/2)x+1)=  =(x+((1−(√5))/4)−((√(10+2(√5)))/4)i)(x+((1−(√5))/4)+((√(10+2(√5)))/4)i)(x+((1+(√5))/4)−((√(10−2(√5)))/4)i)(x+((1+(√5))/4)+((√(10−2(√5)))/4)i)  p(e^(i(π/5)) )=1+(√(5+2(√5)))i  p(cos (π/5))=((67)/(32))+((19(√5))/(32))

(x4+x3+x2+x+1)(x1)=x51x5=1x0=1x1=154+10+254ix2=1+54+10254ix3=1+5410254ix4=15410+254ix4+x3+x2+x+1==(x2+152x+1)(x2+1+52x+1)==(x+15410+254i)(x+154+10+254i)(x+1+5410254i)(x+1+54+10254i)p(eiπ5)=1+5+25ip(cosπ5)=6732+19532

Commented by mathmax by abdo last updated on 25/Aug/19

thanks sir.

thankssir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com