All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32994 by abdo imad last updated on 09/Apr/18
find∫0∞1−cos(λx)x2dxwithλ>0.
Commented by abdo imad last updated on 15/Apr/18
changementλx=ugiveI=∫0∞1−cosu(uλ)2duλ=λ∫0∞1−cosuu2dubut∫0∞1−cosuu2du=2∫0∞sin2(u2)u2du=u2=t2∫0∞sin2t4t22dt=∫0∞sin2tt2dt(byparts)=[−1tsin2t]0+∞−∫0∞−1t2sintcostdt=∫0∞sin(2t)tdt=2t=x∫0∞sin(x)x2dx2=∫0+∞sinxxdx=π2⇒I=λπ2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com