Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42394 by abdo.msup.com last updated on 24/Aug/18

find ∫_0 ^1    (dt/(t+(√(1−t^2 )))) dt

find01dtt+1t2dt

Commented by maxmathsup by imad last updated on 25/Aug/18

changement   t = sinx give  I  =  ∫_0 ^(π/2)      ((cosxdx)/(sinx +cosx)) dx  = ∫_0 ^(π/2)       (dx/(tanx +1))  I =_(tanx =u)    ∫_0 ^(+∞)       (1/(1+u))  (du/(1+u^2 ))  = ∫_0 ^∞        (du/((u+1)(u^2  +1)))  let decompose  F(u) = (1/((u+1)(u^2 +1))) ⇒F(u) =(a/(u+1)) +((bu +c)/(u^2  +1))  a =lim_(u→−1) (u+1)F(u) =(1/2)  lim_(u→+∞) u F(u) =0 =a+b ⇒b =−(1/2) ⇒F(u) =(1/(2(u+1)))  +((−(1/2)u +c)/(u^2  +1))  F(0) =1 =(1/2)  +c ⇒c =(1/2) ⇒F(u) = (1/(2(u+1)))  −(1/2) ((u−1)/(u^2  +1)) ⇒  I = ∫_0 ^∞  F(u)du = (1/2) ∫_0 ^∞    (du/(u+1))  −(1/4) ∫_0 ^∞    ((2u−2)/(u^2  +1))du  =[ (1/2)ln∣u+1∣−(1/4)ln(u^2  +1)]_0 ^(+∞)   +(1/2) [arctanu]_0 ^(+∞)   =(1/2)[ln∣ ((u+1)/(√(u^2  +1)))∣]_0 ^(+∞)   +(π/4)  =0+(π/4) =(π/4) .

changementt=sinxgiveI=0π2cosxdxsinx+cosxdx=0π2dxtanx+1I=tanx=u0+11+udu1+u2=0du(u+1)(u2+1)letdecomposeF(u)=1(u+1)(u2+1)F(u)=au+1+bu+cu2+1a=limu1(u+1)F(u)=12limu+uF(u)=0=a+bb=12F(u)=12(u+1)+12u+cu2+1F(0)=1=12+cc=12F(u)=12(u+1)12u1u2+1I=0F(u)du=120duu+11402u2u2+1du=[12lnu+114ln(u2+1)]0++12[arctanu]0+=12[lnu+1u2+1]0++π4=0+π4=π4.

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Aug/18

t=sinα  dt=cosαdα  ∫_0 ^(Π/2) ((cosα)/(cosα+sinα))dα  =(1/2)∫_0 ^(Π/2) ((cosα+sinα+cosα−sinα)/(cosα+sinα))dα  =(1/2)∫_0 ^(Π/2) dα+(1/2)∫_0 ^(Π/2) ((d(sinα+cosα))/(cosα+sinα))  =(1/2)((Π/2))+(1/2)∣ln(cosα+sinα)∣_0 ^(Π/2)   =(Π/4)+(1/2){ln(1)−ln1}  =(Π/4)

t=sinαdt=cosαdα0Π2cosαcosα+sinαdα=120Π2cosα+sinα+cosαsinαcosα+sinαdα=120Π2dα+120Π2d(sinα+cosα)cosα+sinα=12(Π2)+12ln(cosα+sinα)0Π2=Π4+12{ln(1)ln1}=Π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com