All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42394 by abdo.msup.com last updated on 24/Aug/18
find∫01dtt+1−t2dt
Commented by maxmathsup by imad last updated on 25/Aug/18
changementt=sinxgiveI=∫0π2cosxdxsinx+cosxdx=∫0π2dxtanx+1I=tanx=u∫0+∞11+udu1+u2=∫0∞du(u+1)(u2+1)letdecomposeF(u)=1(u+1)(u2+1)⇒F(u)=au+1+bu+cu2+1a=limu→−1(u+1)F(u)=12limu→+∞uF(u)=0=a+b⇒b=−12⇒F(u)=12(u+1)+−12u+cu2+1F(0)=1=12+c⇒c=12⇒F(u)=12(u+1)−12u−1u2+1⇒I=∫0∞F(u)du=12∫0∞duu+1−14∫0∞2u−2u2+1du=[12ln∣u+1∣−14ln(u2+1)]0+∞+12[arctanu]0+∞=12[ln∣u+1u2+1∣]0+∞+π4=0+π4=π4.
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Aug/18
t=sinαdt=cosαdα∫0Π2cosαcosα+sinαdα=12∫0Π2cosα+sinα+cosα−sinαcosα+sinαdα=12∫0Π2dα+12∫0Π2d(sinα+cosα)cosα+sinα=12(Π2)+12∣ln(cosα+sinα)∣0Π2=Π4+12{ln(1)−ln1}=Π4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com