Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 145183 by mathmax by abdo last updated on 03/Jul/21

find ∫_0 ^1  (dx/(((√x)+(√(x+1)))^3 ))

find01dx(x+x+1)3

Commented by justtry last updated on 03/Jul/21

Answered by mindispower last updated on 03/Jul/21

x=sh^2 (t)  ⇔∫((sh(2t)dt)/e^(3t) )  =(1/(2e^t ))−(e^(−5t) /2)  =−(e^(−t) /2)+(e^(−5t) /(10))+c,t=argsh((√x))

x=sh2(t)sh(2t)dte3t=12ete5t2=et2+e5t10+c,t=argsh(x)

Answered by mathmax by abdo last updated on 03/Jul/21

Ψ=∫_0 ^1  (dx/(((√x)+(√(x+1)))^3 ))  changement  x=sh^2 t give  sht=(√x) ⇒t=argsh((√x))=log((√x)+(√(1+x))) ⇒  Ψ=∫_0 ^(log(1+(√2)))   ((2sht cht)/((sht+cht)^3 )) dt =∫_0 ^(log(1+(√2)))  ((sh(2t))/e^(3t) )dt  =∫_0 ^(log(1+(√2)))  e^(−3t) .((e^(2t) −e^(−2t) )/2)dt =(1/2)∫_0 ^(log(1+(√2)))  (e^(−t)  −e^(−5t) )dt  =(1/2)[−e^(−t) +(1/5)e^(−5t) ]_0 ^(log(1+(√2)))   Ψ=(1/2)(−(1/(1+(√2)))+(1/(5(1+(√2))^5 )) +1−(1/5))

Ψ=01dx(x+x+1)3changementx=sh2tgivesht=xt=argsh(x)=log(x+1+x)Ψ=0log(1+2)2shtcht(sht+cht)3dt=0log(1+2)sh(2t)e3tdt=0log(1+2)e3t.e2te2t2dt=120log(1+2)(ete5t)dt=12[et+15e5t]0log(1+2)Ψ=12(11+2+15(1+2)5+115)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com