All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28073 by abdo imad last updated on 20/Jan/18
find∫01e−2xln(1+te−x)dxwith0<t<1.
Commented by abdo imad last updated on 26/Jan/18
letputf(t)=∫01e−2xln(1+te−x)dxf′(t)=∫01e−2xe−x1+te−xdx=∫01e−3x(∑n=0∝(−1)ntne−nx)dx=∑n=0∝(−1)ntn∫01e−(n+3)xdx=∑n=0∞(−1)ntn−(n+3)[e−(n+3)x]01=−∑n=0∞(−1)ntnn+3(e−(n+3)−1)=∑n=0+∞(−1)nn+3tn−∑n=0+∞(−1)ntne−(n+3)n+3⇒f(t)=∫0t(....)du+λ=∑n=0∝(−1)n(n+1)(n+3)tn+1−∑n.0∝(−1)ntn+1e−(n+3)(n+1)(n+3)+λλ=f(0)=0andf(x)=12∑n=0∝(−1)n(1n+1−1n+3)tn+1−e−22∑n=0∝(−1)n(1n+1−1n+3)(te−1)n+1=12∑n=0∝(−1)nn+1tn+1−12∑n=0∝(−1)ntn+1n+3−e−22∑n=0∝(−1)n(te−1)n+1n+1+e−22∑n=0∝(−1)n(te−1)n+1n+3andallthosesumarecalculable...becontiued.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com