All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 76781 by mathmax by abdo last updated on 30/Dec/19
find∫0∞1−e−x2x2dx
Commented by ~blr237~ last updated on 30/Dec/19
letconsiderf(t)=∫0∞1−e−tx2x2dxift⩾0f(t)existcausethefunctionx→1−e−tx2x2iscontinuouson[0,∞[withanextensionin0duetolimx→01−e−tx2x2=t.soDf=R+leta>0,b>0and(x,t)∈Da,b=[0,∞[×[a,b]∣e−tx2∣⩽e−ax2weknowthat∫0∞e−ax2dxconvergescausea>0so(x,t)→∂∂t(1−e−tx2x2)verifytheconvergencehypothesisonDa,bthenf∈C1([a,b],R)∀a>0b>0finallyf∈C1(R+,R)wecanwritef′(t)=∫0∞e−tx2dx=∫0∞e−(xt)2d(xt)t=1t∫0∞e−u2du=π2tthenf(t)=2πt+cweknowthatf(0)=0=c(rememberthat0∈Df)Finallyf(t)=∫0∞1−e−tx2x2dx=2πttheresultisf(1)=∫0∞1−e−x2x2dx=2π
Commented by mathmax by abdo last updated on 10/Jan/20
thankssir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com