Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 76781 by mathmax by abdo last updated on 30/Dec/19

find ∫_0 ^∞   ((1−e^(−x^2 ) )/x^2 )dx

find01ex2x2dx

Commented by ~blr237~ last updated on 30/Dec/19

let consider  f(t)=∫_0 ^∞ ((1−e^(−tx^2 ) )/x^2 )dx  if t≥0    f(t)  exist  cause  the function  x→((1−e^(−tx^2 ) )/x^2 ) is  continuous on [0,∞[ with an extension in 0 due to   lim_(x→0)  ((1−e^(−tx^2 ) )/x^2 ) = t    . so Df=R_+   let  a>0,b>0  and (x,t)∈D_(a,b) =[0,∞[×[a,b]  ∣e^(−tx^2 ) ∣≤ e^(−ax^2 )    we know that  ∫_0 ^∞ e^(−ax^2 )   dx converges   cause a>0  so     (x,t)→(∂/∂t)(((1−e^(−tx^2 ) )/x^2 ))verify the convergence hypothesis on D_(a,b)  then  f ∈C^1 ([a,b],R)  ∀ a>0 b>0  finally  f ∈ C^1 (R_+ ,R)  we can write   f′(t)=∫_0 ^∞ e^(−tx^2 ) dx= ∫_0 ^∞ e^(−(x(√t) )^2 ) ((d(x(√t) ))/(√t))       = (1/(√t))  ∫_0 ^∞ e^(−u^2 ) du  = (√(π/(2t)))    then f(t)= (√(2πt )) +c   we know that  f(0)=0=c  ( remember that 0∈Df )  Finally  f(t)=∫_0 ^∞ ((1−e^(−tx^2 ) )/x^2 )dx=(√(2πt))   the result is  f(1)=∫_0 ^∞ ((1−e^(−x^2 ) )/x^2 )dx=(√(2π))

letconsiderf(t)=01etx2x2dxift0f(t)existcausethefunctionx1etx2x2iscontinuouson[0,[withanextensionin0duetolimx01etx2x2=t.soDf=R+leta>0,b>0and(x,t)Da,b=[0,[×[a,b]etx2∣⩽eax2weknowthat0eax2dxconvergescausea>0so(x,t)t(1etx2x2)verifytheconvergencehypothesisonDa,bthenfC1([a,b],R)a>0b>0finallyfC1(R+,R)wecanwritef(t)=0etx2dx=0e(xt)2d(xt)t=1t0eu2du=π2tthenf(t)=2πt+cweknowthatf(0)=0=c(rememberthat0Df)Finallyf(t)=01etx2x2dx=2πttheresultisf(1)=01ex2x2dx=2π

Commented by mathmax by abdo last updated on 10/Jan/20

thanks sir.

thankssir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com