Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 78270 by msup trace by abdo last updated on 15/Jan/20

find ∫_0 ^1  ((ln(1−x^2 )ln(x))/x^2 )dx  prove first the convergence.

find01ln(1x2)ln(x)x2dxprovefirsttheconvergence.

Commented by mathmax by abdo last updated on 15/Jan/20

let I =∫_0 ^1 ((ln(1−x^2 )ln(x))/x^2 )dx   the convergence is assured by sir  <mind is power>   we have ln^′ (1−u)=−(1/(1−u))=−Σ_(n=0) ^∞  u^n   for  ∣u∣<1 ⇒ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1))  +c  (c=0)=−Σ_(n=1) ^∞  (u^n /n) ⇒  ln(1−x^2 ) =−Σ_(n=1) ^∞  (x^(2n) /n) ⇒ ((ln(1−x^2 )ln(x))/x^2 )=−Σ_(n=1) ^∞  (x^(2n−2) /n)ln(x)  ⇒I =−Σ_(n=1) ^∞ (1/n) ∫_0 ^1  x^(2n−2)  ln(x)dx  by parts  ∫_0 ^1  x^(2n−2) ln(x)dx =[(1/(2n−1))x^(2n−1) ln(x)]_0 ^1 −∫_0 ^1  (1/(2n−1))x^(2n−1) (dx/x)  =−(1/(2n−1))∫_0 ^1   x^(2n−2)  dx =−(1/((2n−1)^2 ))[x^(2n−1) ]_0 ^1  =((−1)/((2n−1)^2 )) ⇒  I =Σ_(n=1) ^∞   (1/(n(2n−1)^2 ))  let decompose F(x)=(1/(x(2x−1)^2 ))  F(x)=(a/x) +(b/(2x−1)) +(c/((2x−1)^2 ))  a=xF(x)∣_(x=0)   =1  c =(2x−1)^2 F(x)∣_(x=(1/2))    =2 ⇒F(x)=(1/x) +(b/(2x−1)) +(2/((2x−1)^2 ))  F(1)=1 =1 +b +2 ⇒b=−2 ⇒F(x)=(1/x)−(2/(2x−1)) +(2/((2x−1)^2 )) ⇒  I =Σ_(n=1) ^∞  F(n) =Σ_(n=1) ^∞ ((1/n)−(2/(2n−1))) +2Σ_(n=1) ^∞  (1/((2n−1)^2 ))  Σ_(n=1) ^∞ ((1/n)−(2/(2n−1))) =lim s_n   with s_n =Σ_(k=1) ^n ((1/k)−(2/(2k−1)))  =H_n −2Σ_(k=1) ^n  (1/(2k−1)) but  Σ_(k=1) ^n  (1/(2k−1)) =1 +(1/3) +(1/5) +...+(1/(2n−1))  =1+(1/2) +(1/3) +(1/4) +... +(1/(2n−1)) +(1/(2n)) −(1/2)−(1/4)−...−(1/(2n))  =H_(2n) −(1/2) H_n  ⇒ s_n =H_n −2{H_(2n) −(1/2) H_n }  =2H_n −2H_(2n)   =2( ln(n)+γ +o((1/n))−ln(2n)−γ+o((1/n)))  =2( ln((n/(2n))) +o((1/n))) ⇒lim s_n =−2ln(2) let findA= Σ_(n=1) ^∞  (1/((2n−1)^2 ))  A =Σ_(n=0) ^∞  (1/((2n+1)^2 )) we have (π^2 /6) =Σ_(n=1) ^∞  (1/n^2 ) =(1/4)Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒  Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(1−(1/4))(π^2 /6) =(3/4)×(π^2 /6) =(π^2 /8) ⇒  I =−2ln(2)+2×(π^2 /8) =(π^2 /4)−2ln(2)

letI=01ln(1x2)ln(x)x2dxtheconvergenceisassuredbysir<mindispower>wehaveln(1u)=11u=n=0unforu∣<1ln(1u)=n=0un+1n+1+c(c=0)=n=1unnln(1x2)=n=1x2nnln(1x2)ln(x)x2=n=1x2n2nln(x)I=n=11n01x2n2ln(x)dxbyparts01x2n2ln(x)dx=[12n1x2n1ln(x)]010112n1x2n1dxx=12n101x2n2dx=1(2n1)2[x2n1]01=1(2n1)2I=n=11n(2n1)2letdecomposeF(x)=1x(2x1)2F(x)=ax+b2x1+c(2x1)2a=xF(x)x=0=1c=(2x1)2F(x)x=12=2F(x)=1x+b2x1+2(2x1)2F(1)=1=1+b+2b=2F(x)=1x22x1+2(2x1)2I=n=1F(n)=n=1(1n22n1)+2n=11(2n1)2n=1(1n22n1)=limsnwithsn=k=1n(1k22k1)=Hn2k=1n12k1butk=1n12k1=1+13+15+...+12n1=1+12+13+14+...+12n1+12n1214...12n=H2n12Hnsn=Hn2{H2n12Hn}=2Hn2H2n=2(ln(n)+γ+o(1n)ln(2n)γ+o(1n))=2(ln(n2n)+o(1n))limsn=2ln(2)letfindA=n=11(2n1)2A=n=01(2n+1)2wehaveπ26=n=11n2=14n=11n2+n=01(2n+1)2n=01(2n+1)2=(114)π26=34×π26=π28I=2ln(2)+2×π28=π242ln(2)

Answered by mind is power last updated on 15/Jan/20

cv   in zero   ((ln(1−x^2 ))/x^2 )∼1  ((ln(1−x^2 ))/x^2 ).ln(x)∼ln(x)  log is integrabl in zero  in 1  ((ln(1−x^2 ).ln(x))/x^2 )=g(x)  lim_(x→1) (√(1−x )) g(x)=0⇒g(x)=o((1/(√(1−x))))  since (1/(√(1−x))) is integral in 1^− ⇒g also  since g is continus ]0,1[ ⇒is integrable  ∫_0 ^1 ((ln(1−x^2 )ln(x))/x^2 )dx  ln(1−x^2 )=−Σ_(k≥1) (x^(2k) /k)  =−∫_0 ^1 Σ_(k≥1) ((x^(2k) ln(x))/k)dx  =−Σ_(k≥1) ∫_0 ^1 ((ln(x)x^(2k) )/k)dx  u=−ln(x)⇒dx=−e^(−u) du  =Σ_(k≥1) ∫_0 ^(+∞) (((−u).(−e^(−u) )e^(−2ku) )/k)du  =Σ_(k≥1) ∫_0 ^(+∞) ((ue^(−(1+2k)u) )/k)du,w=(1+2k)u⇒du=(dw/(1+2k))  =Σ_(k≥1) ∫_0 ^(+∞) ((we^(−w) )/(k(1+2k)^2 ))dw  =Σ_(k≥1) (1/(k(1+2k)^2 )).∫_0 ^(+∞) we^(−w) dw=Σ_(k≥1) (1/(k(1+2k)^2 ))  =Σ((1/k)−(2/((1+2k)^2 ))−(2/((1+2k))))  =Σ_(k≥1) ((2/(2k))−(2/(1+2k)))−2Σ_(k≥1) (1/((1+2k)^2 ))  =2{Σ_(k≥1) (((−1)^k )/k)+1}−2((3ζ(2))/4)  =2{1−ln(2))−(3/2).(π^2 /6)  =2−2ln(2)−(π^2 /4)

cvinzeroln(1x2)x21ln(1x2)x2.ln(x)ln(x)logisintegrablinzeroin1ln(1x2).ln(x)x2=g(x)limx11xg(x)=0g(x)=o(11x)since11xisintegralin1galsosincegiscontinus]0,1[isintegrable01ln(1x2)ln(x)x2dxln(1x2)=k1x2kk=01k1x2kln(x)kdx=k101ln(x)x2kkdxu=ln(x)dx=eudu=k10+(u).(eu)e2kukdu=k10+ue(1+2k)ukdu,w=(1+2k)udu=dw1+2k=k10+wewk(1+2k)2dw=k11k(1+2k)2.0+wewdw=k11k(1+2k)2=Σ(1k2(1+2k)22(1+2k))=k1(22k21+2k)2k11(1+2k)2=2{k1(1)kk+1}23ζ(2)4=2{1ln(2))32.π26=22ln(2)π24

Commented by msup trace by abdo last updated on 15/Jan/20

thank you sir.

thankyousir.

Commented by mind is power last updated on 15/Jan/20

y′re Welcom

yreWelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com