Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32716 by caravan msup abdo. last updated on 31/Mar/18

find ∫_0 ^(2π)   ((cos^2 x)/(1+3sin^2 x))dx .

find02πcos2x1+3sin2xdx.

Answered by Joel578 last updated on 02/Apr/18

I = ∫ (((1 + cos 2x)/2)/(1 + ((3(1 − cos 2x))/2))) dx = ∫ ((1 + cos 2x)/(5 − 3cos 2x)) dx     = ∫ ((1 + ((1 − t^2 )/(1 + t^2 )))/(5 − ((3(1 − t^2 ))/(1 + t^2 )))) ((dt/(1 + t^2 )))      → t = tan x     = ∫ (2/(2 + 8t^2 ))((dt/(1 + t^2 ))) = ∫ (dt/((1 + 4t^2 )(1 + t^2 )))      = ∫ (4/3)((1/(1 + 4t^2 ))) − (1/3)((1/(1 + t^2 )) )dt     = (2/3)tan^(−1) (2t) − (1/3)tan^(−1) (t)     = (2/3)tan^(−1) (2tan x) − (x/3)    I = 4 [(2/3)tan^(−1) (2tan x) − (x/3)]_0 ^(π/2)       = 4[((2/3)tan^(−1) (2tan (π/2)) − (π/6)) − 0]      = 4((π/3) − (π/6)) = ((2π)/3)

I=1+cos2x21+3(1cos2x)2dx=1+cos2x53cos2xdx=1+1t21+t253(1t2)1+t2(dt1+t2)t=tanx=22+8t2(dt1+t2)=dt(1+4t2)(1+t2)=43(11+4t2)13(11+t2)dt=23tan1(2t)13tan1(t)=23tan1(2tanx)x3I=4[23tan1(2tanx)x3]0π2=4[(23tan1(2tanπ2)π6)0]=4(π3π6)=2π3

Commented by Joel578 last updated on 02/Apr/18

My first try.  Please recheck my solution

Myfirsttry.Pleaserecheckmysolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com