All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32716 by caravan msup abdo. last updated on 31/Mar/18
find∫02πcos2x1+3sin2xdx.
Answered by Joel578 last updated on 02/Apr/18
I=∫1+cos2x21+3(1−cos2x)2dx=∫1+cos2x5−3cos2xdx=∫1+1−t21+t25−3(1−t2)1+t2(dt1+t2)→t=tanx=∫22+8t2(dt1+t2)=∫dt(1+4t2)(1+t2)=∫43(11+4t2)−13(11+t2)dt=23tan−1(2t)−13tan−1(t)=23tan−1(2tanx)−x3I=4[23tan−1(2tanx)−x3]0π2=4[(23tan−1(2tanπ2)−π6)−0]=4(π3−π6)=2π3
Commented by Joel578 last updated on 02/Apr/18
Myfirsttry.Pleaserecheckmysolution
Terms of Service
Privacy Policy
Contact: info@tinkutara.com