All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 31092 by abdo imad last updated on 02/Mar/18
find∫0∞ln(1+4x2)1+2x2dx.
Commented by abdo imad last updated on 07/Mar/18
letintroducetheparametricfunctionf(t)=∫0∞ln(1+tx2)1+2x2dxwitht⩾0wehavef′(t)=∫0∞x2(1+tx2)(1+2x2)dx=12∫0∞2x2+1−1(1+tx2)(1+2x2)dx=12∫0∞dx1+tx2−12∫0∞dx(1+2x2)(1+tx2)but∫0∞dx1+tx2=tx=u=∫0∞11+u2dut=π2tnowletdecomposeF(t)=1(1+2x2)(1+tx2)=ax+b2x2+1+cx+dtx2+1F(−x)=F(x)⇒F(x)=−ax+b2x2+1+−cx+dtx2+1⇒a=c=0⇒F(x)=b2x2+1+dtx2+1wehavelimx→+∞x2F(x)=0=b2+dt=0⇒2d+tb=0⇒d=−t2b⇒F(t)=b2x2+1−t2btx2+1wehaveF(0)=1=b−tb2⇒(1−t2)b=1⇒(2−t)b=2⇒b=22−t⇒F(x)=2(2−t)(2x2+1)−t(2−t)(tx2+1)=12−t(22x2+1−ttx2+1)⇒∫0∞F(x)dx=22−t∫0∞dx2x2+1−t2−t∫0∞dxtx2+1but∫0∞dx2x2+1=2x=u∫0∞11+u2du2=π22.∫0∞dxtx2+1=π2t⇒∫0∞F(x)dx=π2(2−t)−t2−tπ2t=π2(2−t)−πt2(2−t)⇒f′(t)=π4t−π22(2−t)+πt4(2−t)=π4(1t−2π2(2−t)+t2−t)⇒f(t)=π4∫dtt−π22∫dt2−t+π4∫t2−tdt+λ=π2t+π22ln∣2−t∣+π4∫u2−u22udu+λπ4∫2u22−u2du=π2∫u22−u2duand∫u22−u2du=−∫2−u2−22−u2du=−u+2∫du2−u2=−u+12∫(12−u+12+u)=−t+12ln∣2+t2−t∣⇒f(t)=π2t+π22ln∣2−t∣+π2(−t+12ln∣2+t2−t∣)+λf(t)=π22ln∣2−t∣+π22ln∣2+t2−t∣+λwehavef(0)=0=πln222+λ⇒λ=−πln222finallyf(t)=π22ln∣2−t∣+π22ln∣2+t2−t∣−πln222lettaket=4∫0∞ln(1+4t2)1+2t2=π22ln2+π22ln∣2+22−2∣−πln222.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com