Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 31092 by abdo imad last updated on 02/Mar/18

find ∫_0 ^∞   ((ln(1+4x^2 ))/(1+2x^2 ))dx .

find0ln(1+4x2)1+2x2dx.

Commented by abdo imad last updated on 07/Mar/18

let introduce the parametric function  f(t)=∫_0 ^∞  ((ln(1+tx^2 ))/(1+2x^2 ))dx with t≥0 wehave  f^′ (t)=∫_0 ^∞      (x^2 /((1+tx^2 )(1+2x^2 )))dx  =(1/2)∫_0 ^∞  ((2x^2 +1−1)/((1+tx^2 )(1+2x^2 )))dx=(1/2)∫_0 ^∞   (dx/(1+tx^2 )) −(1/2)∫_0 ^∞   (dx/((1+2x^2 )(1+tx^2 ))) but  ∫_0 ^∞    (dx/(1+tx^2 )) =_((√t)x=u) =∫_0 ^∞   (1/(1+u^2 )) (du/(√t))=(π/(2(√t)))  now let decompose  F(t)=   (1/((1+2x^2 )(1+tx^2 )))=((ax+b)/(2x^2  +1)) +((cx+d)/(tx^2  +1))  F(−x)=F(x)⇒F(x)=((−ax+b)/(2x^2 +1)) +((−cx +d)/(tx^2 +1))⇒a=c=0 ⇒  F(x)=(b/(2x^2 +1)) +(d/(t^ x^2 +1)) we have lim_(x→+∞) x^2 F(x)=0  =(b/2) +(d/t)=0⇒2d +tb=0 ⇒d=−(t/2)b⇒  F(t)= (b/(2x^2  +1)) −(t/2) (b/(tx^2 +1))  wehave F(0)=1=b −((tb)/2) ⇒  (1−(t/2))b=1 ⇒ (2−t)b=2 ⇒b= (2/(2−t)) ⇒  F(x)=  (2/((2−t)(2x^2 +1))) −  (t/((2−t)(tx^2 +1)))  =(1/(2−t))(     (2/(2x^2 +1)) −(t/(tx^2  +1)))⇒  ∫_0 ^∞  F(x)dx= (2/(2−t))∫_0 ^∞   (dx/(2x^2 +1)) −(t/(2−t))∫_0 ^∞    (dx/(tx^2 +1)) but  ∫_0 ^∞   (dx/(2x^2 +1))=_((√2)x=u)  ∫_0 ^∞   (1/(1+u^2 )) (du/(√2))=(π/(2(√2))).  ∫_0 ^∞    (dx/(tx^2  +1))=(π/(2(√t))) ⇒∫_0 ^∞ F(x)dx= (π/((√2)(2−t))) −(t/(2−t)) (π/(2(√t)))  =(π/((√2)(2−t))) −((π(√t))/(2(2−t))) ⇒f^′ (t)=(π/(4(√t))) −(π/(2(√2)(2−t))) +((π(√t))/(4(2−t)))  =(π/4)(   (1/(√t)) −((2π)/((√2)(2−t))) +((√t)/(2−t)))⇒  f(t)=(π/4)∫ (dt/(√t)) −(π/(2(√2)))∫  (dt/(2−t)) +(π/4)∫  ((√t)/(2−t))dt +λ  =(π/2)(√t)  +(π/(2(√2)))ln∣2−t∣ +(π/4)∫    (u/(2−u^2 )) 2udu +λ  (π/4)∫   ((2u^2 )/(2−u^2 ))du=(π/2) ∫ (u^2 /(2−u^2 ))du and  ∫  (u^2 /(2−u^2 ))du= −∫  ((2−u^2  −2)/(2−u^2 ))du=−u  +2∫   (du/(2−u^2 ))  =−u  +(1/(√2)) ∫( (1/((√2) −u)) +(1/((√2) +u)))=−(√t) +(1/(√2))ln∣(((√2) +(√t))/((√2) −(√t)))∣ ⇒  f(t)=(π/2)(√t)  +(π/(2(√2)))ln∣2−t∣ +(π/2)(−(√t) +(1/(√2))ln∣(((√2) +(√t))/((√2) −(√t)))∣)+λ  f(t)=(π/(2(√2)))ln∣2−t∣ +(π/(2(√2)))ln∣(((√2) +(√t))/((√2) −(√t)))∣ +λ we have  f(0)=0=((πln2)/(2(√2))) +λ ⇒λ=−((πln2)/(2(√2))) finally  f(t)=(π/(2(√2)))ln∣2−t∣ +(π/(2(√2)))ln∣(((√2) +(√t))/((√2) −(√t)))∣ −((πln2)/(2(√2))) let take t=4  ∫_0 ^∞   ((ln(1+4t^2 ))/(1+2t^2 ))=(π/(2(√2)))ln2 +(π/(2(√2)))ln∣(((√2) +2)/((√2) −2))∣ −((πln2)/(2(√2))) .

letintroducetheparametricfunctionf(t)=0ln(1+tx2)1+2x2dxwitht0wehavef(t)=0x2(1+tx2)(1+2x2)dx=1202x2+11(1+tx2)(1+2x2)dx=120dx1+tx2120dx(1+2x2)(1+tx2)but0dx1+tx2=tx=u=011+u2dut=π2tnowletdecomposeF(t)=1(1+2x2)(1+tx2)=ax+b2x2+1+cx+dtx2+1F(x)=F(x)F(x)=ax+b2x2+1+cx+dtx2+1a=c=0F(x)=b2x2+1+dtx2+1wehavelimx+x2F(x)=0=b2+dt=02d+tb=0d=t2bF(t)=b2x2+1t2btx2+1wehaveF(0)=1=btb2(1t2)b=1(2t)b=2b=22tF(x)=2(2t)(2x2+1)t(2t)(tx2+1)=12t(22x2+1ttx2+1)0F(x)dx=22t0dx2x2+1t2t0dxtx2+1but0dx2x2+1=2x=u011+u2du2=π22.0dxtx2+1=π2t0F(x)dx=π2(2t)t2tπ2t=π2(2t)πt2(2t)f(t)=π4tπ22(2t)+πt4(2t)=π4(1t2π2(2t)+t2t)f(t)=π4dttπ22dt2t+π4t2tdt+λ=π2t+π22ln2t+π4u2u22udu+λπ42u22u2du=π2u22u2duandu22u2du=2u222u2du=u+2du2u2=u+12(12u+12+u)=t+12ln2+t2tf(t)=π2t+π22ln2t+π2(t+12ln2+t2t)+λf(t)=π22ln2t+π22ln2+t2t+λwehavef(0)=0=πln222+λλ=πln222finallyf(t)=π22ln2t+π22ln2+t2tπln222lettaket=40ln(1+4t2)1+2t2=π22ln2+π22ln2+222πln222.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com