Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40580 by maxmathsup by imad last updated on 24/Jul/18

find  ∫_0 ^∞    ((ln(1+ix))/(x^3  +8))dx

find0ln(1+ix)x3+8dx

Commented by math khazana by abdo last updated on 28/Jul/18

we have ∣1+ix∣=(√(1+x^2 ))⇒  1+ix=(√(1+x^2 ))((1/(√(1+x^2 ))) +i(x/(√(1+x^2 ))))=r e^(iθ)  ⇒  r=(√(1+x^2 )) and tanθ =x ⇒θ=arctan(x) ⇒  ln(1+ix)=ln(r)+iθ =(1/2)ln(1+x^2 ) +i arctanx  I  = (1/2) ∫_0 ^∞     ((ln(1+x^2 ))/(x^3  +8))dx +i ∫_0 ^∞    ((arctanx)/(x^3  +8))dx  let f(t) =∫_0 ^∞    ((ln(1+x^2 t))/(x^3  +8))dx we have  f^′ (t) =∫_0 ^∞     (x^2 /((1+tx^2 )(x^8  +3)))dx  =(1/t)∫_0 ^∞  ((tx^2 +1−1)/((1+tx^2 )(x^3  +8)))dx  =(1/t)∫_0 ^∞     (dx/(x^3  +8)) −(1/t)∫_0 ^∞    (dx/((tx^2  +1)(x^3  +8)))let  decompose F(x)=(1/(x^3  +8)) =(1/((x+2)(x^2 −2x+4)))  =(a/(x+2)) +((bx+c)/(x^2 −2x+4))  a=lim_(x→−2)  (x+2)F(x)= (1/(12))  lim_(x→+∞) xF(x)=0=a+b ⇒b=−(1/(12))  F(x)=(1/(12(x+2))) +((−(1/(12))x +c)/(x^2 −2x+4))  F(0) =(1/8) = (1/(24)) +(c/4) ⇒1=(1/3) +2c ⇒2c=(2/3) ⇒  c=(1/3) ⇒ F(x)=(1/(12(x+2))) −(1/(12))   ((x −4)/(x^2  −2x+4))  ∫_0 ^∞   F(x)dx =(1/(12)){ ∫_0 ^∞    (dx/(x+2)) −(1/2)∫_0 ^∞   ((2x−2−6)/(x^2  −2x+4))dx}  =(1/(12)){  [ln∣((x+2)/(√(x^2 −2x+4)))∣]_0 ^(+∞)  +3 ∫_0 ^∞    (dx/(x^2 −2x+4))}  =(1/4) ∫_0 ^∞     (dx/(x^2 −2x+1+3)) =(1/4)∫_0 ^∞  (dx/((x−1)^2  +3))  =_(x−1=(√3)u)   (1/4) ∫_(−(1/(√3))) ^∞    (((√3)du)/(3(1+u^2 ))) = ((√3)/(12))[arctanu]_(−(1/(√3))) ^(+∞)   =((√3)/(12))((π/2) +arctan((1/(√3))))=((√3)/(12))((π/2) +(π/6))=((√3)/(12)).((2π)/3)  =((π(√3))/(18))  = ∫_0 ^∞     (dx/(x^3  +8))

wehave1+ix∣=1+x21+ix=1+x2(11+x2+ix1+x2)=reiθr=1+x2andtanθ=xθ=arctan(x)ln(1+ix)=ln(r)+iθ=12ln(1+x2)+iarctanxI=120ln(1+x2)x3+8dx+i0arctanxx3+8dxletf(t)=0ln(1+x2t)x3+8dxwehavef(t)=0x2(1+tx2)(x8+3)dx=1t0tx2+11(1+tx2)(x3+8)dx=1t0dxx3+81t0dx(tx2+1)(x3+8)letdecomposeF(x)=1x3+8=1(x+2)(x22x+4)=ax+2+bx+cx22x+4a=limx2(x+2)F(x)=112limx+xF(x)=0=a+bb=112F(x)=112(x+2)+112x+cx22x+4F(0)=18=124+c41=13+2c2c=23c=13F(x)=112(x+2)112x4x22x+40F(x)dx=112{0dxx+21202x26x22x+4dx}=112{[lnx+2x22x+4]0++30dxx22x+4}=140dxx22x+1+3=140dx(x1)2+3=x1=3u14133du3(1+u2)=312[arctanu]13+=312(π2+arctan(13))=312(π2+π6)=312.2π3=π318=0dxx3+8

Commented by math khazana by abdo last updated on 28/Jul/18

let decompose G(t)=  (1/((tx^2  +1)(x^3  +8)))  G(t) = (1/((tx^2  +1)(x+2)(x^2 −2x+4)))  =(a/(x+2)) +((bx+c)/(tx^2  +1)) +((dx +e)/(x^2 −2x+4))  a=lim_(x→−2) (x+2)G(x)= (1/(12(4t+1)))  lim_(x→+∞) xG(x)=0=a +(b/t) +d ⇒at+b+dt=0  ....be continued...

letdecomposeG(t)=1(tx2+1)(x3+8)G(t)=1(tx2+1)(x+2)(x22x+4)=ax+2+bx+ctx2+1+dx+ex22x+4a=limx2(x+2)G(x)=112(4t+1)limx+xG(x)=0=a+bt+dat+b+dt=0....becontinued...

Commented by math khazana by abdo last updated on 28/Jul/18

let J =∫_0 ^∞   ((arctanx)/(x^3  +8))dx changement  x=2t give J =2∫_0 ^∞   ((arctan(2t))/(8(t^3 +1)))dt  =(1/4)∫_0 ^∞     ((arctan(2t))/(t^3  +1))dt let  w(x)=∫_0 ^∞     ((arctan(xt))/(t^3  +1))dt  w^′ (x) = ∫_0 ^∞     (t/((1+x^2 t^2 )(t^3 +1)))dt let decompose  H(t)= (t/((x^2 t^2  +1)(t^3 +1)))  H(t) = (t/((x^2 t^2  +1)(t+1)(t^2 −t+1)))  =(a/(t+1)) +((bt+c)/(x^2 t^2  +1)) +((dt +e)/(t^2 −t+1))  a =lim_(t→−1) (t+1)H(t) = ((−1)/(3(t^2 +1)))  lim_(t→+∞) tH(t) =a +(b/x^2 )+d=0 ⇒ax^2  +b +dx^2 =0  ....be continued....

letJ=0arctanxx3+8dxchangementx=2tgiveJ=20arctan(2t)8(t3+1)dt=140arctan(2t)t3+1dtletw(x)=0arctan(xt)t3+1dtw(x)=0t(1+x2t2)(t3+1)dtletdecomposeH(t)=t(x2t2+1)(t3+1)H(t)=t(x2t2+1)(t+1)(t2t+1)=at+1+bt+cx2t2+1+dt+et2t+1a=limt1(t+1)H(t)=13(t2+1)limt+tH(t)=a+bx2+d=0ax2+b+dx2=0....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com