Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49939 by turbo msup by abdo last updated on 12/Dec/18

find  ∫_0 ^(π/2) sinx ln(1+x) dx

find0π2sinxln(1+x)dx

Commented by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18

Commented by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18

∫_0 ^(π/2) sinxln(1+x)dx≈(0.2×0.2)×nos smallest square

0π2sinxln(1+x)dx(0.2×0.2)×nossmallestsquare

Commented by mathmax by abdo last updated on 03/Nov/19

let determine a approximate value let A=∫_0 ^(π/2)  sinx ln(1+x)dx  by parts A =[−cosx ln(1+x)]_0 ^(π/2)  −∫_0 ^(π/2) (−cosx)(dx/(1+x))  =∫_0 ^(π/2)  ((cosx)/(1+x))dx   we have  cosx =Σ_(n=0) ^∞  (((−1)^n x^(2n) )/((2n)!))  =1−(x^2 /2) +(x^2 /(24))− ⇒1−(x^2 /2)≤cosx ≤1 ⇒((1−(x^2 /2))/(x+1))≤((cosx)/(x+1))≤(1/(x+1)) ⇒  ∫_0 ^(π/2)  ((2−x^2 )/(2(x+1)))dx ≤∫_0 ^(π/2)  ((cosx)/(x+1))dx ≤∫_0 ^1  (dx/(x+1))  ∫_0 ^1  (dx/(x+1)) =[ln(x+1)]_0 ^1 =ln(2)  ∫_0 ^(π/2)   ((2−x^2 )/(2(x+1)))dx =_(x+1=t)    ∫_1 ^(1+(π/2))   ((2−(t−1)^2 )/(2t))dt  =∫_1 ^(1+(π/2))   ((2−t^2 +2t−1)/t)dt =∫_1 ^(1+(π/2))   ((1−t^2 +2t)/t)dt  =∫_1 ^(1+(π/2))  (dt/t) −∫_1 ^(1+(π/2)) tdt +π =ln(1+(π/2))−[(t^2 /2)]_1 ^(1+(π/2))  +π  =ln(1+(π/2))−(1/2)((1+(π/2))^2 −1)+π ⇒  ln(1+(π/2))−(1/2)(π+(π^2 /4))+π≤A≤ln(2) ⇒  ln(1+(π/2))+(π/2)−(π^2 /8) ≤A ≤ln(2)  and we can take  v_0 =(1/2){ ln(1+(π/2))+(π/2)−(π^2 /8) +ln(2)} as aporoximate value for A

letdetermineaapproximatevalueletA=0π2sinxln(1+x)dxbypartsA=[cosxln(1+x)]0π20π2(cosx)dx1+x=0π2cosx1+xdxwehavecosx=n=0(1)nx2n(2n)!=1x22+x2241x22cosx11x22x+1cosxx+11x+10π22x22(x+1)dx0π2cosxx+1dx01dxx+101dxx+1=[ln(x+1)]01=ln(2)0π22x22(x+1)dx=x+1=t11+π22(t1)22tdt=11+π22t2+2t1tdt=11+π21t2+2ttdt=11+π2dtt11+π2tdt+π=ln(1+π2)[t22]11+π2+π=ln(1+π2)12((1+π2)21)+πln(1+π2)12(π+π24)+πAln(2)ln(1+π2)+π2π28Aln(2)andwecantakev0=12{ln(1+π2)+π2π28+ln(2)}asaporoximatevalueforA

Commented by mathmax by abdo last updated on 03/Nov/19

error of typo at line  8    ...=∫_1 ^(1+(π/2)) ((2−t^2 +2t−1)/(2t))dt =∫_1 ^(1+(π/2)) ((1−t^2  +2t)/(2t))dt  =∫_1 ^(1+(π/2))   (dt/(2t))−∫_1 ^(1+(π/2))  (t/2)dt +∫_1 ^(1+(π/2))  dt  =(1/2)ln(1+(π/2))−(1/4){ (1+(π/2))^2 −1}+(π/2) =.....

erroroftypoatline8...=11+π22t2+2t12tdt=11+π21t2+2t2tdt=11+π2dt2t11+π2t2dt+11+π2dt=12ln(1+π2)14{(1+π2)21}+π2=.....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com