Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35058 by math khazana by abdo last updated on 14/May/18

find  ∫_0 ^(π/4)     (dt/((1+cos^2 t)^3 ))

find0π4dt(1+cos2t)3

Commented by abdo mathsup 649 cc last updated on 18/May/18

let put I = ∫_0 ^(π/4)      (dt/((1+cos^2 t)^3 ))   I = ∫_0 ^(π/4)      (dt/((1+((1+cos(2t))/2))^3 ))  = 8 ∫_0 ^(π/4)     (dt/((3+cos(2t))^3 )) =_(2t=x)    8 ∫_0 ^(π/2)       (1/((3+cosx)^3 ))(dx/2)  = 4 ∫_0 ^(π/2)       (dx/((3+cosx)^3 ))  .changement tan((x/2))= t  give  I =  4  ∫_0 ^1      (1/((3 + ((1−t^2 )/(1+t^2 )))^3 ))  ((2dt)/(1+t^2 ))  I  = 8  ∫_0 ^1    (((1+t^2 )^2 )/((3 +3t^2   +1−t^2 )^3 )) dt  I  = 8 ∫_0 ^1       (((1+t^2 )^2 )/((4 +2t^2 )^3 )) dt = ∫_0 ^1    (((1+t^2 )^2 )/((2+t^2 )^3 )) dt  I = ∫_0 ^1     ((t^4   +2t^2  +1)/(8  +3.2^2 t^2  +3.2.t^4  +t^6 )) dt  = ∫_0 ^1       ((t^4  +2t^2  +1)/(t^6   +6t^4   +12t^2   +8)) dt   let decompose  F(t) = ((t^4  +2t^2  +1)/(t^6  +6t^4  +12t^2  +8)).....be continued...

letputI=0π4dt(1+cos2t)3I=0π4dt(1+1+cos(2t)2)3=80π4dt(3+cos(2t))3=2t=x80π21(3+cosx)3dx2=40π2dx(3+cosx)3.changementtan(x2)=tgiveI=4011(3+1t21+t2)32dt1+t2I=801(1+t2)2(3+3t2+1t2)3dtI=801(1+t2)2(4+2t2)3dt=01(1+t2)2(2+t2)3dtI=01t4+2t2+18+3.22t2+3.2.t4+t6dt=01t4+2t2+1t6+6t4+12t2+8dtletdecomposeF(t)=t4+2t2+1t6+6t4+12t2+8.....becontinued...

Answered by MJS last updated on 16/May/18

∫(dt/((1+cos^2 (t))^3 ))=            [cos(t)=(1/(sec(t))); sec^2 (t)=tan^2 (t)+1]  =∫((sec^2 (t)(tan^2 (t)+1)^2 )/((tan^2 (t)+2)^3 ))dt=            [u=tan(t) → dt=(du/(sec^2 (t)))]  =∫(((u^2 +1)^2 )/((u^2 +2)^3 ))du=∫(du/(u^2 +2))−2∫(du/((u^2 +2)^2 ))+∫(du/((u^2 +2)^3 ))=              ∫(du/(u^2 +2))=                      [v=((√2)/2)u → du=dv(√2)]            =((√2)/2)∫(dv/(v^2 +1))=((√2)/2)arctan(v)=((√2)/2)arctan(((√2)/2)u)              −2∫(du/((u^2 +2)^2 ))=                      [∫(du/((au^2 +b)^n ))=(u/(2b(n−1)(au^2 +b)^(n−1) ))+((2n−3)/(2b(n−1)))∫(du/((au^2 +b)^(n−1) ))]            =−2((u/(4(u^2 +2)))+(1/4)∫(du/(u^2 +2)))=            =−(u/(2(u^2 +2)))−((√2)/4)arctan(((√2)/2)u)              ∫(du/((u^2 +2)^3 ))=(u/(8(u^2 +2)^2 ))+(3/8)∫(du/((u^2 +2)^2 ))=            =(u/(8(u^2 +2)^2 ))+(3/8)((u/(4(u^2 +2)))+((√2)/8)arctan(((√2)/2)u))=            =(u/(8(u^2 +2)^2 ))+((3u)/(32(u^2 +2)))+((3(√2))/(64))arctan(((√2)/2)u)    =((19(√2))/(64))arctan(((√2)/2)u)−((13u)/(32(u^2 +2)))+(u/(8(u^2 +2)^2 ))=  =((19(√2))/(64))arctan(((√2)/2)tan(t))−((tan(t)(13tan^2 (t)+22))/(32(tan^2 (t)+2)^2 ))+C    ∫_0 ^(π/4) (dt/((1+cos^2 (t))^3 ))=((19(√2))/(64))arctan(((√2)/2))−((35)/(288))

dt(1+cos2(t))3=[cos(t)=1sec(t);sec2(t)=tan2(t)+1]=sec2(t)(tan2(t)+1)2(tan2(t)+2)3dt=[u=tan(t)dt=dusec2(t)]=(u2+1)2(u2+2)3du=duu2+22du(u2+2)2+du(u2+2)3=duu2+2=[v=22udu=dv2]=22dvv2+1=22arctan(v)=22arctan(22u)2du(u2+2)2=[du(au2+b)n=u2b(n1)(au2+b)n1+2n32b(n1)du(au2+b)n1]=2(u4(u2+2)+14duu2+2)==u2(u2+2)24arctan(22u)du(u2+2)3=u8(u2+2)2+38du(u2+2)2==u8(u2+2)2+38(u4(u2+2)+28arctan(22u))==u8(u2+2)2+3u32(u2+2)+3264arctan(22u)=19264arctan(22u)13u32(u2+2)+u8(u2+2)2==19264arctan(22tan(t))tan(t)(13tan2(t)+22)32(tan2(t)+2)2+Cπ40dt(1+cos2(t))3=19264arctan(22)35288

Commented by abdo mathsup 649 cc last updated on 15/May/18

thank you sir Mjs for this hard work...

thankyousirMjsforthishardwork...

Commented by MJS last updated on 16/May/18

you′re welcome, it keeps my brains young

yourewelcome,itkeepsmybrainsyoung

Commented by abdo mathsup 649 cc last updated on 16/May/18

are you a doctor or enjener sir Mjs...

areyouadoctororenjenersirMjs...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com