Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 31071 by abdo imad last updated on 02/Mar/18

find  ∫_0 ^π     (dx/(1+sin^2 x)) .

find0πdx1+sin2x.

Commented by abdo imad last updated on 03/Mar/18

thanks.

thanks.

Commented by abdo imad last updated on 02/Mar/18

let put I=∫_0 ^π  (dx/(1+sin^2 x)) ⇒ I= ∫_0 ^π   (dx/(1+((1−cos(2x))/2)))  = ∫_0 ^π    ((2dx)/(3−cos(2x)))  =_(t=2x)  ∫_0 ^(2π)     (dt/(3−cost)) the ch. e^(it) =z give  I= ∫_(∣z∣=1)    (1/(3 −((z +z^(−1) )/2))) (dz/(iz)) = ∫_(∣z∣=1)   ((2dz)/(iz(6−(z+z^(−1) ))))  = ∫_(∣z∣=1) ((−2idz)/(6z −z^2  −1))= ∫_(∣z∣=1)  ((2idz)/(z^2  −6z+1)) let put  ϕ(z)= ((2i)/(z^2  −6z +1)) .poles of ϕ?  z^2  −6z +1=0 ⇒Δ^′ =(−3)^2  −1=8 ⇒z_1 =3 +2(√2)  z_2 =3−2(√2)    ∣z_1 ∣ −1=3+2(√2) −1=2 +2(√2)  >0(to eliminate  from residus) ∣z_2 ∣ −1=2−2(√2) =2(1−(√(2)))<0 ⇒  ∫_(∣z∣=1) ϕ(z)dz=2iπ Res(ϕ,z_2 ) but  ϕ(z)= ((2i)/((z−z_1 )(z−z_2 ))) ⇒Res(ϕ,z_2 )= ((2i)/(z_2 −z_1 )) = ((2i)/(−4(√2))) =((−i)/(2(√2)))  ∫_(∣z∣=1) ϕ(z)dz=2iπ.((−i)/(2(√2))) = (π/(√2))  ⇒ I= (π/(√2)) .

letputI=0πdx1+sin2xI=0πdx1+1cos(2x)2=0π2dx3cos(2x)=t=2x02πdt3costthech.eit=zgiveI=z∣=113z+z12dziz=z∣=12dziz(6(z+z1))=z∣=12idz6zz21=z∣=12idzz26z+1letputφ(z)=2iz26z+1.polesofφ?z26z+1=0Δ=(3)21=8z1=3+22z2=322z11=3+221=2+22>0(toeliminatefromresidus)z21=222=2(12)<0z∣=1φ(z)dz=2iπRes(φ,z2)butφ(z)=2i(zz1)(zz2)Res(φ,z2)=2iz2z1=2i42=i22z∣=1φ(z)dz=2iπ.i22=π2I=π2.

Commented by Joel578 last updated on 02/Mar/18

Nice solution, Sir

Nicesolution,Sir

Answered by Joel578 last updated on 02/Mar/18

I = ∫_0 ^π  ((cosec^2  x )/((1 + sin^2  x)cosec^2  x)) dx     = ∫_0 ^π  ((cosec^2  x)/(cosec^2  x + 1)) dx     = ∫_0 ^π  ((cosec^2  x)/(cot^2  x + 2)) dx    u = cot x  →  du = −cosec^2  x dx   = −∫ ((cosec^2  x)/(u^2  + 2)) . (du/(cosec^2  x)) = −∫ (du/(u^2  + 2))    u = (√2) tan θ  →  du = (√2) sec^2  θ dθ  I = −(√2)∫ ((sec^2  θ)/(2(tan^2  θ + 1))) dθ      = −((√2)/2) ∫ dθ     = −((√2)/2)θ + C = −((√2)/2)tan^(−1) ((u/(√2))) + C     = −((√2)/2)tan^(−1) (((cot x)/(√2))) + C    I = [−((√2)/2)tan^(−1) (((cot x)/(√2)))]_0 ^π      = (−((√2)/2)tan^(−1) (−∞)) − (−((√2)/2)tan^(−1) (∞))     = ((π(√2))/4) + ((π(√2))/4) = ((π(√2))/2)

I=0πcosec2x(1+sin2x)cosec2xdx=0πcosec2xcosec2x+1dx=0πcosec2xcot2x+2dxu=cotxdu=cosec2xdx=cosec2xu2+2.ducosec2x=duu2+2u=2tanθdu=2sec2θdθI=2sec2θ2(tan2θ+1)dθ=22dθ=22θ+C=22tan1(u2)+C=22tan1(cotx2)+CI=[22tan1(cotx2)]0π=(22tan1())(22tan1())=π24+π24=π22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com