Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 31096 by abdo imad last updated on 02/Mar/18

find  ∫_0 ^π    (dx/((a+bcosx)^2 )) with a>b>0 then give the  value of ∫_0 ^π     (dx/((2+cosx)^2 ))

find0πdx(a+bcosx)2witha>b>0thengivethevalueof0πdx(2+cosx)2

Commented by abdo imad last updated on 04/Mar/18

let introduce the function f(a)=∫_0 ^π    (dx/(a+bcosx)) we have  f^′ (a)=−∫_0 ^π    (dx/((a+bcosx)^2 )) ⇒∫_0 ^π   (dx/((a+bcosx)^2 ))=−f^′ (a) let  calculate f(a) ch.tan((x/2))=t give  f(a)= ∫_0 ^∞   (1/(a+b ((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 )) = ∫_0 ^∞     ((2dt)/(a(1+t^2 )+b(1−t^2 )))  =∫_0 ^∞      ((2dt)/(a+b +(a−b)t^2 ))=∫_0 ^∞    ((2dt)/((a+b)(1+((a−b)/(a+b))t^2 ))) then  we use the ch.(√((a−b)/(a+b))) t=u⇒  f(a)= (1/(a+b)) ∫_0 ^∞    (2/((1+u^2 ))) (√((a+b)/(a−b))) du  = (2/(√(a^2  −b^2 ))) ∫_0 ^∞   (du/(1+u^2 ))= (π/2) (2/(√(a^2 −b^2 ))) = (π/(√(a^2  −b^2 )))  f(a)=π(a^2  −b^2 )^(−(1/2))  ⇒f^′ (a)=((−π)/2)(2a)(a^2  −b^2 )^(−(3/2))   =((−πa)/((a^2 −b^2 )(√(a^2  −b^2 )))) ⇒∫_0 ^π     (dx/((a+bcosx)^2 ))= ((πa)/((a^2  −b^2 )(√(a^2  −b^2 ))))  2) let take a=2 and b=1 ⇒  ∫_0 ^π    (dx/((2+cosx)^2 ))=  ((2π)/((2^2  −1^2 )(√(2^2  −1^2 )))) = ((2π)/(3(√3))) .

letintroducethefunctionf(a)=0πdxa+bcosxwehavef(a)=0πdx(a+bcosx)20πdx(a+bcosx)2=f(a)letcalculatef(a)ch.tan(x2)=tgivef(a)=01a+b1t21+t22dt1+t2=02dta(1+t2)+b(1t2)=02dta+b+(ab)t2=02dt(a+b)(1+aba+bt2)thenweusethech.aba+bt=uf(a)=1a+b02(1+u2)a+babdu=2a2b20du1+u2=π22a2b2=πa2b2f(a)=π(a2b2)12f(a)=π2(2a)(a2b2)32=πa(a2b2)a2b20πdx(a+bcosx)2=πa(a2b2)a2b22)lettakea=2andb=10πdx(2+cosx)2=2π(2212)2212=2π33.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com