Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35059 by math khazana by abdo last updated on 14/May/18

find   ∫_0 ^π       (dx/(cosx +sinx))

find0πdxcosx+sinx

Commented by math khazana by abdo last updated on 15/May/18

let put I = ∫_0 ^π     (dx/(cosx +sinx))  changement  tan((x/2))=t give  x=2arctant and  I = ∫_0 ^(+∞)      (1/(((1−t^2 )/(1+t^2 )) +((2t)/(1+t^2 )))) ((2dt)/(1+t^2 ))  I = ∫_0 ^(+∞)        ((2dt)/(1−t^2  +2t)) = −2 ∫_0 ^∞      (dt/(t^2  −2t −1))  =−2 ∫_0 ^∞       (dt/((t−1)^2  −2))  =−2 ∫_0 ^∞       (dt/((t−3)(t+1)))  =(1/2) ∫_0 ^∞ { (1/(t+1)) −(1/(t−3))}dt  =(1/2) [ln∣((t+1)/(t−3))∣]_0 ^(+∞)    =(1/2)( −ln((1/3)))  I =(1/2)ln(3).

letputI=0πdxcosx+sinxchangementtan(x2)=tgivex=2arctantandI=0+11t21+t2+2t1+t22dt1+t2I=0+2dt1t2+2t=20dtt22t1=20dt(t1)22=20dt(t3)(t+1)=120{1t+11t3}dt=12[lnt+1t3]0+=12(ln(13))I=12ln(3).

Commented by prof Abdo imad last updated on 16/May/18

error in the final lines  I =−2 ∫_0 ^∞     (dt/((t−1)^2 −2))  =−2 ∫_0 ^∞       (dt/((t−1−_ (√2))(t−1 +(√2))))  =((−2)/(2(√2)))∫_0 ^∞     {  (1/(t−1−(√2))) −(1/(t−1+(√2)))}dt  =−(1/(√2))[ln∣((t−1−(√2))/(t−1+(√2)))]]_0 ^(+∞)   =((−1)/(√2))( −ln(((1+(√2))/((√2) −1))))   I = (1/(√2))ln(((1+(√2))/(−1+(√2))))

errorinthefinallinesI=20dt(t1)22=20dt(t12)(t1+2)=2220{1t121t1+2}dt=12[lnt12t1+2]]0+=12(ln(1+221))I=12ln(1+21+2)

Answered by tanmay.chaudhury50@gmail.com last updated on 15/May/18

I=∫_0 ^Π (dx/(cos(Π−x)+sin(Π−x)))  2I=∫_0 ^Π (1/(cosx+sinx))+(1/(−cosx+sinx)) dx  =∫_0 ^Π ((2sinx)/(sin^2 x−cos^2 x)) dx  I=(1/2)∫_0 ^Π ((2sinx)/(1−2cos^2 x))dx  =∫_0 ^Π (((−sinx))/(2cos^2 x−1))dx  =(1/2)∫_0 ^Π ((d(cosx))/(cos^2 x−((1/(√2)))^2 ))  =(1/2)×((√2)/2)∣ln((cosx−(1/(√2)))/(cosx+(1/(√2))))∣_0 ^Π

I=0Πdxcos(Πx)+sin(Πx)2I=0Π1cosx+sinx+1cosx+sinxdx=0Π2sinxsin2xcos2xdxI=120Π2sinx12cos2xdx=0Π(sinx)2cos2x1dx=120Πd(cosx)cos2x(12)2=12×22lncosx12cosx+120Π

Commented by NECx last updated on 15/May/18

please how did you change  ∫_0 ^π (1/(cosx+sinx))dx to  ∫_0 ^π (1/(cos(π−x)+sin(π−x)))dx???

pleasehowdidyouchange0π1cosx+sinxdxto0π1cos(πx)+sin(πx)dx???

Commented by tanmay.chaudhury50@gmail.com last updated on 15/May/18

∫_0 ^a f(x)dx=∫_0 ^a f(a−x)dx

0af(x)dx=0af(ax)dx

Commented by NECx last updated on 15/May/18

oh... Thanks

oh...Thanks

Answered by tanmay.chaudhury50@gmail.com last updated on 15/May/18

∫(dx/(cosx+sinx))  t=tan(x/2)  dt=(1/2)sec^2 (x/2)  ∫(dx/(((1−tan^2 (x/2))/(1+tan^2 (x/2)))+((2tan(x/2))/(1+tan^2 (x/2)))))  ∫((sec^2 (x/2))/(1−tan^2 (x/2)+2tan(x/2)))  ∫((2dt)/(1−t^2 +2t))  −2∫(dt/(t^2 −2t+1−2))  −2∫(dt/((t−1)^2 −((√2))^2 ))  now use formula and put limit    or method  ∫_0 ^Π (dx/(cosx+sinx))  =∫_0 ^Π (((1/(√2))dx)/((1/(√2))cosx+(1/(√2))sinx))  =(1/(√2))∫_0 ^Π (dx/(sin(Π/4+x)))      now useformula and put limit

dxcosx+sinxt=tanx2dt=12sec2x2dx1tan2x21+tan2x2+2tanx21+tan2x2sec2x21tan2x2+2tanx22dt1t2+2t2dtt22t+122dt(t1)2(2)2nowuseformulaandputlimitormethod0Πdxcosx+sinx=0Π12dx12cosx+12sinx=120Πdxsin(Π/4+x)nowuseformulaandputlimit

Terms of Service

Privacy Policy

Contact: info@tinkutara.com