All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33119 by abdo imad last updated on 10/Apr/18
find∫0∞tnet−1dtbyusingξ(x)fornintegrξ(x)=∑n=1∞1nxwithx>1.
Commented by prof Abdo imad last updated on 15/Apr/18
letputAn=∫0∞tnet−1dtAn=∫0∞e−ttn1−e−tdt=∫0∞tne−t(∑p=0∞e−pt)dt=∑p=0∞∫0∞tne−(p+1)tdtthech(p+1)t=ugiveAn=∑p=0∞∫0∞un(p+1)ne−udu(p+1)=∑p=0∞1(p+1)n+1∫0∞une−udubutweknowthatΓ(x)=∫0∞tx−1e−tdtforx>0⇒∫0∞une−udu=Γ(n+1)and∑p=0∞1(p+1)n+1=∑p=1∞1pn+1=ξ(n+1)⇒An=Γ(n+1).ξ(n+1).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com