All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28885 by abdo imad last updated on 31/Jan/18
find∫−11dtt+1+t2.
Commented by abdo imad last updated on 02/Feb/18
letputI=∫−11dtt+1+t2I=∫−111+t2−t1+t2−t2dt=∫−111+t2dt−∫−11tdt=2∫011+t2dt−0=2∫011+t2dtthech.t=tanxgive∫011+t2dt=∫0π4cosx(1+tan2x)dx=∫0π4dxcosxandthech.tan(x2)=ugive∫0π4dxcosx=∫02−111−u21+u22du1+u2=∫02−12du1−u2=∫02−1(11+u+11−u)du=[ln∣1+u1−u∣]02−1=ln(22−2)=ln(22(2−1))=−ln(2−1).I=−2ln(2−1).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com