Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40146 by maxmathsup by imad last updated on 16/Jul/18

find   ∫_(1/2) ^1     (dx/((√(4x^2  −1)) +(√(4x^2  +1))))

find121dx4x21+4x2+1

Commented by maxmathsup by imad last updated on 19/Jul/18

let I = ∫_(1/2) ^1     (dx/((√(4x^2 −1)) −(√(4x^2 +1)))) changement 2x=t give  I  = ∫_1 ^2          (1/((√(t^2 −1)) +(√(t^2  +1)))) (dt/2) ⇒  2I = ∫_1 ^2   (((√(t^2 +1)) −(√(t^2  −1)))/2)dt ⇒4I = ∫_1 ^2 (√(t^2  +1))dt−∫_1 ^2 (√(t^2 −1))dt  but  ∫_1 ^2 (√(t^2  +1))dt  =_(t=sh(x))    ∫_(argsh(1)) ^(argsh(2)) (√(1+sh^2 x))chxdx= ∫_(ln(1+(√2))) ^(ln(2+(√5)))   ch^2 xdx  =(1/2) ∫_(ln(1+(√2))) ^(ln(2+(√5))) (1+ch(2x))dx  =(1/2)(ln(2+(√5))−ln(1+(√2))  +(1/4) [sh(2x)]_(ln(1+(√2))) ^(ln(2+(√5)))   =(1/2){ln(2+(√5)) −ln(1+(√2))} +(1/4)[((e^(2x)  −e^(−2x) )/2)]_(ln(1+(√2))) ^(ln(2+(√5)))   =(1/2){ln(2+(√5))−ln(1+(√2))} +(1/8){(2+(√5))^2 −(2+(√5))^(−2)  −(1+(√2))^2  +(1+(√2))^(−2) }  also changement  t =ch(x) give  ∫_1 ^2 (√(t^2 −1))dt = ∫_(argch(1)) ^(argch(2))  sh(x)sh(x)dx  = ∫_0 ^(ln(2+(√3)))  ((ch(2x)−1)/2)dx=−(1/2)ln(2+(√3)) +(1/4)[sh(2x)^ ]_0 ^(ln(2+(√3)))   =−(1/2)ln(2+(√3)) +(1/8){ (2+(√3))^2  −(2+(√3))^(−2) } .

letI=121dx4x214x2+1changement2x=tgiveI=121t21+t2+1dt22I=12t2+1t212dt4I=12t2+1dt12t21dtbut12t2+1dt=t=sh(x)argsh(1)argsh(2)1+sh2xchxdx=ln(1+2)ln(2+5)ch2xdx=12ln(1+2)ln(2+5)(1+ch(2x))dx=12(ln(2+5)ln(1+2)+14[sh(2x)]ln(1+2)ln(2+5)=12{ln(2+5)ln(1+2)}+14[e2xe2x2]ln(1+2)ln(2+5)=12{ln(2+5)ln(1+2)}+18{(2+5)2(2+5)2(1+2)2+(1+2)2}alsochangementt=ch(x)give12t21dt=argch(1)argch(2)sh(x)sh(x)dxMissing \left or extra \right=12ln(2+3)+18{(2+3)2(2+3)2}.

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18

∫_(1/2) ^1 (((√(4x^2 +1)) −(√(4x^2 −1)) )/2)dx  (1/2)∫_(1/2) ^1 2(√(x^2 +((1/2))^2 ))  dx−(1/2)∫_(1/2) ^1  2(√(x^2 −((1/2))^2 )) dx  now jse formula  ∫(√(x^2 +a^2  ))  dx  and ∫(√(x^2 −a^2 )) dx

1214x2+14x212dx121212x2+(12)2dx121212x2(12)2dxnowjseformulax2+a2dxandx2a2dx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com