All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40146 by maxmathsup by imad last updated on 16/Jul/18
find∫121dx4x2−1+4x2+1
Commented by maxmathsup by imad last updated on 19/Jul/18
letI=∫121dx4x2−1−4x2+1changement2x=tgiveI=∫121t2−1+t2+1dt2⇒2I=∫12t2+1−t2−12dt⇒4I=∫12t2+1dt−∫12t2−1dtbut∫12t2+1dt=t=sh(x)∫argsh(1)argsh(2)1+sh2xchxdx=∫ln(1+2)ln(2+5)ch2xdx=12∫ln(1+2)ln(2+5)(1+ch(2x))dx=12(ln(2+5)−ln(1+2)+14[sh(2x)]ln(1+2)ln(2+5)=12{ln(2+5)−ln(1+2)}+14[e2x−e−2x2]ln(1+2)ln(2+5)=12{ln(2+5)−ln(1+2)}+18{(2+5)2−(2+5)−2−(1+2)2+(1+2)−2}alsochangementt=ch(x)give∫12t2−1dt=∫argch(1)argch(2)sh(x)sh(x)dxMissing \left or extra \rightMissing \left or extra \right=−12ln(2+3)+18{(2+3)2−(2+3)−2}.
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18
∫1214x2+1−4x2−12dx12∫1212x2+(12)2dx−12∫1212x2−(12)2dxnowjseformula∫x2+a2dxand∫x2−a2dx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com