Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64866 by mathmax by abdo last updated on 22/Jul/19

find ∫_1 ^(+∞)  (dx/(x^2 (√(1+x+x^2 ))))

find1+dxx21+x+x2

Commented by mathmax by abdo last updated on 23/Jul/19

let A =∫_1 ^(+∞)   (dx/(x^2 (√(x^2 +x+1))))   we have x^2  +x+1 =(x+(1/2))^2  +(3/4)  changement x+(1/2)=((√3)/2) sh(t) give sh(t)=((2x+1)/(√3))  A = ∫_(argsh((√3))) ^(+∞)     (1/((((√3)/2)sht−(1/2))^2 ((√3)/2)ch(t))) ((√3)/2) ch(t)dt  = 4∫_(ln((√3)+(√4))) ^(+∞)     (dt/(((√3)sh(t)−1)^2 )) =4 ∫_(ln(2+(√3))) ^(+∞)   (dt/(3sh^2 t −2(√3)sht +1))  =4 ∫_(ln(2+(√3))) ^(+∞)  (dt/(3((ch(2t)−1)/2)−2(√3)sh(t) +1))  =8∫_(ln(2+(√3))) ^(+∞)      (dt/(3ch(2t)−3 −4(√3)sh(t) +2))  =8 ∫_(ln(2+(√3))) ^(+∞)   (dt/(3ch(2t)−4(√3)sh(t)−1))  =8 ∫_(ln(2+(√3))) ^(+∞)      (dt/(3((e^(2t)  +e^(−2t) )/2)−4(√3)((e^t −e^(−t) )/(2 ))−1))  =16 ∫_(ln(2+(√3))) ^(+∞)     (dt/(3 e^(2t)  +3e^(−2t)  −4(√3)e^t  +4(√3)e^(−t)  −2))  =_(e^t  =u)     16 ∫_(2+(√3)) ^(+∞)         (du/(u( 3 u^2  +3u^(−2)  −4(√3)u +4(√3)u^(−1) −2)))  =16 ∫_(2+(√3)) ^(+∞)       (du/(3u^3  +3u^(−1) −4(√3)u^2  +4(√3)−2u))  =16 ∫_(2+(√3)) ^(+∞)    ((udu)/(3u^4  +3 −4(√3)u^3  +4(√3)u−2u^2 ))  let decompose  F(u) =(u/(3u^4 −4(√3)u^3  −2u^2  +4(√3)u +3)) ....be continued....

letA=1+dxx2x2+x+1wehavex2+x+1=(x+12)2+34changementx+12=32sh(t)givesh(t)=2x+13A=argsh(3)+1(32sht12)232ch(t)32ch(t)dt=4ln(3+4)+dt(3sh(t)1)2=4ln(2+3)+dt3sh2t23sht+1=4ln(2+3)+dt3ch(2t)1223sh(t)+1=8ln(2+3)+dt3ch(2t)343sh(t)+2=8ln(2+3)+dt3ch(2t)43sh(t)1=8ln(2+3)+dt3e2t+e2t243etet21=16ln(2+3)+dt3e2t+3e2t43et+43et2=et=u162+3+duu(3u2+3u243u+43u12)=162+3+du3u3+3u143u2+432u=162+3+udu3u4+343u3+43u2u2letdecomposeF(u)=u3u443u32u2+43u+3....becontinued....

Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19

let us change  u=(1/x)    du=−(dx/x^2 )        then  we have I=∫_(0  ) ^1 ((udu)/(√(1+u+u^2 ))) =(1/2)[∫_0 ^1 ((2u+1)/(√(1+u+u^2 ))) du −∫_(0 ) ^1 (du/(√(1+u+u^2 )))]  for the 2^(nd )   integral J we knows that 1+u+u^2 =(3/4)[(((2u+1)/(√3)))^2 +1]  let us change v=arctan(((2u+1)/(√3)))    dv= (((2/(√3))du)/((((2u+1)/(√3)))^2 +1))  so  J=∫_0 ^1   (du/(√(1+u+u^2 )))=∫_(π/6) ^(π/3) (√(tan^2 v+1)) dv=∫_(π/6) ^(π/3)  (dv/(cosv))=∫_(π/6) ^(π/3) ((cosv dv)/((1−sinv)(1+sinv)))=∫_(π/6) ^(π/3) (1/2).[((cosv)/(1−sinv)) +((cosv)/(1+sinv))]dv                      =[(1/2)ln∣((1+sinv)/(1−sinv))∣ ]_(π/6) ^(π/3) =ln(((4+2(√3))/3))  Now    I=(1/2).( [2(√(1+u+u^2 ))]_0 ^1   − J )=(1/2).[( 2(√(3 )) −2)−ln(((4+2(√3))/3))]

letuschangeu=1xdu=dxx2thenwehaveI=01udu1+u+u2=12[012u+11+u+u2du01du1+u+u2]forthe2ndintegralJweknowsthat1+u+u2=34[(2u+13)2+1]letuschangev=arctan(2u+13)dv=23du(2u+13)2+1soJ=01du1+u+u2=π6π3tan2v+1dv=π6π3dvcosv=π6π3cosvdv(1sinv)(1+sinv)=π6π312.[cosv1sinv+cosv1+sinv]dv=[12ln1+sinv1sinv]π6π3=ln(4+233)NowI=12.([21+u+u2]01J)=12.[(232)ln(4+233)]

Commented by mathmax by abdo last updated on 28/Jul/19

thank you sir.

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com