All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 31056 by abdo imad last updated on 02/Mar/18
find∫1+∞dxx2−2xcosα+1with0<α<π.
Commented by abdo imad last updated on 03/Mar/18
I=∫1+∞dxx2−2xcosα+cos2α+sin2α=∫1+∞dx(x−cosα)2+sin2αthech.x−cosα=sinαtgiveI=∫1−cosαsinα+∞sinαdtsin2α(1+t2)=1sinα∫tan(α2)+∞dt1+t2I=1sinα[arctant]tan(α2)+∞=1sinα(π2−α2)⇒I=π−α2sinα.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com