All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 31503 by abdo imad last updated on 09/Mar/18
find∫25dttt2−1.
Commented by abdo imad last updated on 16/Mar/18
ch.t=ch(x)giveI=∫argch(2)argch(5)shxdxch(x)sh(x)=∫argch(2)argch(5)dxex+e−x2=2∫argch2)argch(5)dxex+e−xletusethech.ex=t⇒I=2∫eargch(2)eargch(5)dtt(t+1t)=2∫eargch(2)eargch(5)dtt2+1=2[arctan(t)]eargch(2)eargch(5)butweknowthatargch(x)=ln(x+x2−1)⇒argch(2)=ln(2+3)andargch(5)=ln(5+2)I=2[arctan(t)]2+32+5=2(arctan(2+5)−arctan(2+3))
Terms of Service
Privacy Policy
Contact: info@tinkutara.com