Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60494 by Mr X pcx last updated on 21/May/19

find ∫ (√((√(2+x^2 ))−x))dx

find2+x2xdx

Commented by maxmathsup by imad last updated on 22/May/19

let use the chang. (√(2+x^2 ))−x =t ⇒(√(2+x^2 ))=x+t ⇒ 2+x^2 =x^2  +2xt +t^2  ⇒  2xt +t^2 =2 ⇒2tx =2−t^2  ⇒x =((2−t^2 )/(2t)) =(1/t) −(t/2) ⇒dx =(−(1/t^2 )−(1/2))dt ⇒  ∫ (√((√(2+x^2 ))−x))dx =∫  (√t)(−(1/t^2 ) −(1/2))dt  =−∫ ((√t)/t^2 )dt −(1/2) ∫ (√t)dt =_((√t)=u)      −∫  (u/u^4 )(2u)du −(1/2)∫u(2u)du  =−2 ∫  (du/u^2 ) −∫ u^2  du =(2/u) −(1/3)u^3  +c =(2/(√t)) −(1/3)((√t))^3  +c  =(2/(√(√(2+x^2 −x)))) −(1/3)((√((√(2+x^2 ))−x)))^3  +c

letusethechang.2+x2x=t2+x2=x+t2+x2=x2+2xt+t22xt+t2=22tx=2t2x=2t22t=1tt2dx=(1t212)dt2+x2xdx=t(1t212)dt=tt2dt12tdt=t=uuu4(2u)du12u(2u)du=2duu2u2du=2u13u3+c=2t13(t)3+c=22+x2x13(2+x2x)3+c

Answered by MJS last updated on 21/May/19

∫(√((√(x^2 +2))−x))dx=       [t=(√((√(x^2 +2))−x)) → dx=−((2(√(x^2 +2)))/(√((√(x^2 +2))−x)))dt]       [⇒ x=((2−t^4 )/(2t^2 )) ⇒ dx=−((t^4 +2)/t^3 )dt]  =−∫((t^4 +2)/t^2 )dt=−∫t^2 dt−2∫(dt/t^2 )=−(t^3 /3)+(2/t)=  =((6−t^4 )/(3t))=(2/3)(x(√((√(x^2 +2))−x))+(2/(√((√(x^2 +2))−x))))+C

x2+2xdx=[t=x2+2xdx=2x2+2x2+2xdt][x=2t42t2dx=t4+2t3dt]=t4+2t2dt=t2dt2dtt2=t33+2t==6t43t=23(xx2+2x+2x2+2x)+C

Commented by maxmathsup by imad last updated on 22/May/19

thanks sir mjs.

thankssirmjs.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com