All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 60494 by Mr X pcx last updated on 21/May/19
find∫2+x2−xdx
Commented by maxmathsup by imad last updated on 22/May/19
letusethechang.2+x2−x=t⇒2+x2=x+t⇒2+x2=x2+2xt+t2⇒2xt+t2=2⇒2tx=2−t2⇒x=2−t22t=1t−t2⇒dx=(−1t2−12)dt⇒∫2+x2−xdx=∫t(−1t2−12)dt=−∫tt2dt−12∫tdt=t=u−∫uu4(2u)du−12∫u(2u)du=−2∫duu2−∫u2du=2u−13u3+c=2t−13(t)3+c=22+x2−x−13(2+x2−x)3+c
Answered by MJS last updated on 21/May/19
∫x2+2−xdx=[t=x2+2−x→dx=−2x2+2x2+2−xdt][⇒x=2−t42t2⇒dx=−t4+2t3dt]=−∫t4+2t2dt=−∫t2dt−2∫dtt2=−t33+2t==6−t43t=23(xx2+2−x+2x2+2−x)+C
thankssirmjs.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com